Estudo da Variação do Tempo de Síntese e Potencial Fotocatalítico de Nanoparticulas de ZnO Obtido pelo Método Hidrotermal-Micro-Ondas

  • Tania R. Giraldi Universidade Federal de Alfenas - UNIFAL-MG
  • Khasmira K. A. T. A. Silva Universidade Federal de Alfenas - UNIFAL-MG
  • José S. B. Junior Universidade Federal de Alfenas - UNIFAL-MG
Keywords: microwave, ZnO, photocatalysis, nanoparticles

Abstract

ZnO nanoparticles were synthesized by microwave synthesis, with a time of 10 to 30 minutes. The nanoparticles presented a wurtzite phase, with residues of synthesis on the surface. By crystallite size results, it is assumed that the nucleation was complete in 10 minutes of synthesis, and the growth was more accentuated in 30 minutes, time that presented smaller amount of residues. Photocatalytic essays with the dye Rhodamine-B indicate that the best results were obtained with nanoparticles synthesized from 10 to 25 minutes. It is believed that the species adsorbed on the nanoparticle’s surface was a facilitator in the generation of free radicals.

References

1. Rahman, Q.I.; Ahmad, M.; Misra, S.K.; Lohani, M. Mater. Lett. 2013, 71, 170.

2. Byrappa, K.; Subramani, A.K.; Ananda, S.; Lokanatha Rai, K.M.; Dinesh, R.; Yoshimura, M. Mater. Sci., 29(5), 2006.

3. Di Mauro, A.; Fragalà, M.E.; Privitera, V.; Impellizzeri, G. Mater. Sci. Semicond. Process. 2017, 69, 44.

4. Pal, B.; Sharon, M. Mater. Chem. Phys. 2002, 76, 82.

5. Aal, A.A.; Mahmoud, S.A.; Aboul-Gheit, A.K. Mater. Sci. Eng. C. 2009, 29(3), 831.

6. Mao, Y.; Li, Y.; Zou, Y.; Shena, X.; Zhua, L.; Liaod, G. Ceram. International. 2019, 45(2), 1724.

7. Hamid, S.B.A.; Teh, S.J.; Lai, C.W. Catalysts. 2017, 7(3), 93.

8. Liu, H.L.; Yang, T.C.K. Process Biochem. 2003, 39(4), 475.

9. Klubnuan, S.; Suwanboon, S.; Amornpitoksuk, P. Opt. Mater. 2016, 53, 134.

10. Huang, J.; Xia, C.; Cao, L.; Zeng, X. Mater. Sci. Eng. B Solid-State Mater Adv Technol. 2008, 150(3), 187.

11. Pan, L.; Liu, X.; Suna, Z.; Sun, C.Q.J of Mat Chem A. 2013, 1, 8299.

12. Ortega, P.P.; Silva, C.C.; Ramirez, M.A.; Biasotto, G.; Foschini, C.R., Simões, A.Z. Appl Surf Sci. 2021, 542, 148723.

13. Cortaza, A.M; Morales, E.R.; Pal, U.; Hernandez, G.P.; Blanco, L.R. Ceramics International. 2021, 47, 27469.

14. Das, A.; Kumar, P.M.; Bhagavathiachari, M.; Nair, R.G. Materials Science and Engineering B. 2021, 269, 115149

15. Klung, H; Alexander, L. In X-ray diffraction procedures. New York: Wiley, 1962.

16. Silverstein, R. M., Bassler G. C., Morrill, T. C., Spectrometric Identification of Organic Compounds, 5 ed. John Wiley & Sons, New York (1991).

17. Giraldi, T.R.; Santos, G.V.F.; de Mendonça, V.R.; Ribeiro, C.; Weber, I.T. Mat Chem and Phys. 2012, 136(2-3), 505.

18. Giraldi, T.R.; Santos, G.V.F.; de Mendonça, V.R.; Ribeiro, C.; Weber, I.T. J. of Nanoscience and Nanotechnology. 2011, 11, 3635.

19. Mourão, H.A.J.L.; de Mendonça, V.R.; Malagutti, A.R.; Ribeiro, C. Quim. Nova, 2009, 32, 2181.

Published
2023-05-08
How to Cite
Giraldi, T. R., Silva, K. K. A. T. A., & B. Junior, J. S. (2023). Estudo da Variação do Tempo de Síntese e Potencial Fotocatalítico de Nanoparticulas de ZnO Obtido pelo Método Hidrotermal-Micro-Ondas. Revista Processos Químicos, 16(32), 45-52. https://doi.org/10.19142/rpq.v18i32.667