Síntese de Baixo Custo de Novos Materiais na Forma de Heteroestruturas de Molibidatos e Tungstatos

  • Yagly G. S. Gomes
  • Rívia A. R. Arruda Universidade Federal de Catalão, Instituto de Química
  • Nara L. Oliveira Universidade Federal de Catalão, Instituto de Química
  • Lorrana M. Fidelis Universidade Federal de Catalão, Instituto de Química
  • Maria R. C. Santos Universidade Federal de Catalão, Instituto de Química
  • Mario G. Junior Universidade Federal de Catalão, Instituto de Química
Palavras-chave: molibidatos, tungstatos, heteroestrututas

Resumo

Nesta pesquisa investigou-se os métodos de coprecipitação (CP) e coprecipitaçãoseguida de tratamento hidrotérmico assistido por micro-ondas (CPTHAM) na síntesedos semicondutores CaWO4, CaMoO4, Ag2MoO4, isolados e acoplados. As estruturas dosmateriais obtidos foram caracterizadas pela técnica de difração de raios X (DRX), a fimde comprovar a obtenção das fases cristalinas de interesse dos materiais por meio dasrotas estudadas. De acordo com a técnica usada, os materiais mostraram-se cristalinos nasfases scheelite para o CaWO4 e o CaMoO4 e espinélio cúbico para o Ag2MoO4.

Referências

CAMARANO, A. D.; GIURANNO, D.; NARCISO, J. Newadvanced SiC-based composite materials for use in highly oxidizingenvironments: Synthesis of SiC/IrSi3. Journal of the EuropeanCeramic Society, v. 40, n. 3, p. 603–611, mar. 2020.2. GAO, H. et al. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalyticactivity. Colloids and Surfaces A: Physicochemical and EngineeringAspects, v. 642, p. 128642, 2022.3. WANG, S. et al. Structure characterization, optical andphotoluminescence properties of scheelite-type CaWO4nanophosphors: Effects of calcination temperature and carbonskeleton. Optical Materials, v. 99, p. 109562, 2020.4. SAHMI, A.; BENSADOK, K.; TRARI, M. Photoelectrochemicalproperties of CaWO4 synthetized by chemical route. Application tothe phenobarbital electro-photocatalysis. Journal of Photochemistryand Photobiology A: Chemistry, v. 349, p. 36–41, 2017.5. CIACO, F. R. C. et al. O papel dos modificadores de rede naprodução da fotoluminescência no CaWO4. cerâmica, p. 43–49,2004.6. SAHMI, A.; BENSADOK, K.; Trari, M. Photoelectrochemicalproperties of CaWO4 synthetized by chemical route. Application tothe phenobarbital electro-photocatalysis, 2017.7. ZHANG, Y. et al. Synthesis of CaWO4-biochar nanocompositesfor organic dye removal. Materials Research Bulletin, v. 110, p.169–173, 2019.8. DESHMUKH, N. S.; DEOSARKAR, M. P. A review on ultrasoundand photocatalysis-based combined treatment processes for pesticidedegradation. Materials Today: Proceedings, 2021.9. Lin, K.-S. et al. Preparation and characterization of V-Loadedtitania nanotubes for adsorption/photocatalysis of basic dye andenvironmental hormone contaminated wastewaters. Catalysis Today,v. 307, p. 119–130, 2018.10. ARORA, A. K. et al. Behavior of silver molybdate at high-pressure.Journal of Solid State Chemistry, v. 196, p. 391–397, 2012.11. ANJUM MOINUDDIN, A. et al. Morphologically and hierarchicallycontrolled Ag/Ag2MoO4 microspheres for photocatalytic hydrogengeneration. Applied Surface Science, v. 597, p. 153554, 2022.12. DUBEY, R. S. Temperature-dependent phase transformation of TiO2nanoparticles synthesized by sol-gel method. Materials Letters, v.215, p. 312–317, 2018.13. RIBEIRO, C. et al. Anisotropic growth of oxide nanocrystals:insights into the rutile TiO2 phase. The Journal of PhysicalChemistry C, v. 111, n. 16, p. 5871–5875, 2007.14. JAGGESSAR, A. et al. Mechanical, bactericidal and osteogenicbehaviours of hydrothermally synthesised TiO2 nanowire arrays.Journal of the mechanical behavior of biomedical materials, v. 80, p.311–319, 2018.15. ZHANG, L. et al. Effects of co-precipitation temperature on structureand properties of La and Y doped cerium zirconium mixed oxides.Transactions of Nonferrous Metals Society of China, v. 32, n. 2, p.618–628, 2022.16. SCZANCOSKI, J. C. et al. SrMoO4 powders processed inmicrowave-hydrothermal: Synthesis, characterization and opticalArAtirgtiog Co oGnevriadla 1d0o 1118 Revista Processos Químicos Jan/Jun de 2025properties. Chemical Engineering Journal, v. 140, n. 1, p. 632–637,2008.17. VAHABIRAD, S.; NEZAMZADEH-EJHIEH, A. Co-precipitationsynthesis of BiOI/(BiO)2CO3: Brief characterization and the kineticstudy in the photodegradation and mineralization of sulfasalazine.Journal of Solid State Chemistry, v. 310, p. 123018, 2022.18. BOTELHO, G. et al. Study of structural and optical properties ofCaMoO4 nanoparticles synthesized by the microwave-assistedsolvothermal method. Materials Chemistry and Physics, v. 183, p.110–120, 2016.19. SUN, Y. et al. Persimmon-like CaMoO4 micro/nanomaterials: Arapid microwave-assisted fabrication, characterization, and thegrowth mechanism. Solid state sciences, v. 14, n. 2, p. 219–224,2012.20. HIRATSUKA, R. S.; SANTILLI, C. V.; Pulcinelli, S. H. Oprocesso sol-gel: uma visão físico-química. Química nova, p.171–180, 1995.21. CAMARGO, E. R. et al. Phase evolution of lead titanate from itsamorphous precursor synthesized by the OPM wet-chemical route.Journal of Solid State Chemistry, v. 177, n. 6, p. 1994–2001, 2004.22. TAHERINIA, D.; MOAZZENI, M.; MORAVEJ, S. Comparisonof hydrothermal and electrodeposition methods for the synthesisof CoSe2/CeO2 nanocomposites as electrocatalysts toward oxygenevolution reaction. International Journal of Hydrogen Energy, v. 47,n. 40, p. 17650–17661, 2022.23. HOUSHIAR, M. et al. Synthesis of cobalt ferrite (CoFe2O4)nanoparticles using combustion, coprecipitation, and precipitationmethods: A comparison study of size, structural, and magneticproperties. Journal of Magnetism and Magnetic Materials, v. 371, p.43–48, 2014.24. De Cássia Pereira, S. et al. Fast and efficient microwave-assistedsynthesis of CaTiO3. Materials Research Express, v. 4, n. 6, p.65014, 2017.25. KAPPE, C. O. Microwave dielectric heating in synthetic organicchemistry. Chemical Society Reviews, v. 37, n. 6, p. 1127–1139,2008.26. STRAUSS, C. R.; ROONEY, D. W. Accounting for clean, fastand high yielding reactions under microwave conditions. Greenchemistry, v. 12, n. 8, p. 1340–1344, 2010.27. SANTOS, M. A. B. Dos. Síntese e caracterização de nanocompósitosde hidróxidos de terras raras e investigação da propriedadefotoluminescente. 2016.28. WANG, S. et al. Structure characterization, optical andphotoluminescence properties of scheelite-type CaWO4nanophosphors: Effects of calcination temperature and carbonskeleton. Optical Materials, v. 99, p. 109562, 2020.29. MUKHANOVA, E. A. et al. Influence of the methods of synthesisand grain size distribution on XEOL spectra of CaWO4:xTb3+.Inorganic Chemistry Communications, v. 140, p. 109407, 2022.30. ZHANG, Y.; HOLZWARTH, N. A. W.; WILLIAMS, R. T. Electronicband structures of the scheelite materials CaMoO4, CaWO4,PbMoO4, and PbWO4. Physical Review B, v. 57, n. 20, p. 12738,1998.31. OLIVEIRA, F. K. F. et al. Experimental and theoretical study toexplain the morphology of CaMoO4 crystals. Journal of Physics andChemistry of Solids, v. 114, p. 141–152, 2018.32. GAO, H. et al. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalyticactivity. Colloids and Surfaces A: Physicochemical and EngineeringAspects, v. 642, p. 128642, jun. 2022.33. ANJUM MOINUDDIN, A. et al. Morphologically and hierarchicallycontrolled Ag/Ag2MoO4 microspheres for photocatalytic hydrogengeneration. Applied Surface Science, v. 597, p. 153554, 2022.34. SANAKOUSAR, F. M. et al. Thermal decomposition synthesisof cylindrical rod-like MoO3 and irregular sphere-like Ag2MoO4nanocrystals for accelerating photocatalytic degradation of industrialreactive dyes and biosensing application. Journal

Publicado
2025-05-31
Como Citar
G. S. Gomes, Y., A. R. Arruda, R., L. Oliveira, N., M. Fidelis, L., R. C. Santos, M., & G. Junior, M. (2025). Síntese de Baixo Custo de Novos Materiais na Forma de Heteroestruturas de Molibidatos e Tungstatos. Revista Processos Químicos, 20(37), 111-120. https://doi.org/10.19142/rpq.v20i37.783