Effect of Coupling BiVO₄ and CoFe2O₄ on Structural Characteristics and Photocatalytic Property
Abstract
In this study, the methods of coprecipitation (CP) and coprecipitation followed by microwave-assisted hydrothermal treatment (CPTHAM) were evaluated in the synthesis of BiVO4 and CoFe2O4 semiconductors, isolated and coupled. The structure and morphology of the materials obtained were analyzed by XRD, IR spectroscopy, Raman, SEM and TEM. The application of the materials, photoactivated by visible light, in the degradation reactions of the dyes methylene blue (AM) and rhodamine B (RB) showed the greater photocatalytic potential of BiVO4 in relation to CoFe2O4 and the materials resulting from the BiVO4/CoFe2O4 coupling, with 85.98% degradation of AM and 34.24% of RB.
References
CAM, N. T. D.; PHAM, H.-D.; PHAM, T.-D.; PHUONG, T. T. T.;HOANG, C. V.; TUNG, M. H. T.; TRUNG, N. T.; HUONG, N. T.;HIEN, T. T. T. Ceram. Int. 2021, 47, 1686.
CAMARANO, A. D.; GIURANNO, D.; NARCISO, J. J. Eur. Ceram.Soc. 2020, 40, 603.
LI, Y.; XING, X.; PEI, J.; LI, R.; WEN, Y.; CUI, S.; LIU, T. Ceram. Int.2020, 46, 12637.
MAHMOOD, M.; YOUSUF, M. A.; BAIG, M. M.; IMRAN, M.;SULEMAN, M.; SHAHID, M.; KHAN, M. A.; WARSI, M. F. PhysicaB Condens. Matter. 2018, 550, 317.
FERREIRA, A. M.; SILVA, G. C.; DUARTE, H. A. Quim. Nova Esc.2014, 8, 30.
BUENO, R. T.; LOPES, O. F.; CARVALHO, K. T. G.; RIBEIRO, C.;MOURÃO, H. A. J. L. Quim. Nova. 2019, 42, 1.
REVANKAR, M. S.; LELE, S. S. BIORESOUR. TECHNOL. 2007,98, 775.
GAO, H.; WANG, S.; WANG, Y.; YANG, H.; WANG, F.; TANG, S.; YI,Z.; LI, D. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 642, 128642.
GERMANI, R.; BINI, M.; FANTACCI, S.; SIMONETTI, F.; TIECCO,M.; VAIOLI, E.; GIACCO, T. D. J. Photochem. Photobiol. A: Chem.2021, 418, 113342.
TEIXEIRA, A. R. F. A.; NERIS, A. M.; LONGO, E.; CARVALHOFILHO, J. R.; HAKKI, A.; MACPHEE, D.; SANTOS, I. M. G. J.Photochem. Photobiol. A: Chem. 2019, 369, 181.
TROQUE, B. F.; ELIZIÁRIO, S. A.; GODINHO, M. J.; KIMINAMI, R.H. G. A. Cerâmica. 2018, 64, 248.
FINCUR, N.L.; KRSTIC J. B.; ŠIBUL, F. S.; ŠOJIĆ, D. V.DESPOTOVIĆ, V. N.; BANIĆ, N. D.; AGBABA, J. R.; Abramović, B.F. Chem. Eng. J. 2017, 307, 1105.
BALACHANDRAN, S.; PRAKASH, N.; THIRUMALAI, K.;MURUGANANDHAM, M.; SILLANPÄÄ, M.; SWAMINATHAN, M.Ind. Eng. Chem. Res. 2014, 53, 8346.
AHMED, S.; RASUL, M. G.; MARTENS, W. N.; BROWN, R.;HASHIB, M. A. Desalination. 2010, 261, 3.
SIRÉS, I.; BRILLAS, E.; OTURAN, M. A.; RODRIGO, M. A.;PANIZZA, M. Environ. Sci. Pollut. Res. 2014, 21, 8336.
CHANG, X.; HUANG, J.; CHENG, C.; SHA, W.; LI, X.; JI, G.; DENG,S.; YU, G. J. Hazard. Mater. 2010, 173, 765.
KUDO, A.; HIJII, S. CHEM. Lett. 1999, 28, 1103.
MENG, X.; LI, Z.; ZHANG, Z. Chemosphere. 2018, 198, 1.
KAMBLE, G. S.; NATARAJAN, T. S.; PATIL, S. S.; THOMAS, M.;CHOUGALE, R. K. SANADI, P. D.; SIDDHART, U. S.; LING, Y-C.Nanomaterials. 2023, 13, 1528.
MACHADO, A. E. H.; PATROCINIO, A. O. T.; FRANÇA, M. D.;SANTOS, L. M.; BORGES, K. A.; PAULA, L. F.; Metal Oxides forPhotoinduced Hydrogen Production and Dye Sensitized Solar CellApplications. Materials and Processes for Energy: communicatingcurrent research and technological developments. MéndezVilas A., ed.Badajoz: Formatex, 2013.
FU, Y.; CHEN, H.; SUN, X.; WANG, X. APPL. Catal. B Environ. 2012,111-112, 280.
KAEWMANEE, T.; PHURUANGRAT, A.; THONGTEM, T.;THONGTEM, S. CERAM. Int. 2020, 46, 3655.
MAHMOOD, M.; YOUSUF, M. A.; BAIG, M. M.; IMRAN, M.;SULEMAN, M.; SHARID, M.; KHAN, M. A.; WARSI, M. F. Phys. BCondens.Matter. 2018, 550, 317.
TERNA, A. D.; ELEMIKE, E. E.; MBONU, J. I.; OSAFILE, O. E.;EZEANI, R. O. MATER. Sci. Eng. B. 2021, 272, 115363.
MARTINS, M. A.; TRINDADE, T. Quim. Nova. 2012, 35, 1434.
SOUSA FILHO, P. C.; SERRA, O. A. Quim. Nova. 2015, 45, 424.
MIKHAILIK, V. B.; KRAUS, H.; KAPUSTYANYK, V.; PANASYUK,M.; PROTS, Y.; TSYBUKSKYI, V.; VASYLECHKO, L. J. PHYS.Condens. Matter. 2008, v. 20, 365219.
PERREUX, L.; LOUPY, A. TETRAHEDRON. 2001, 57, 9199.
SILVA, J. B.; VIEIRA, F.; NASCIMENTO, G. L. T.; MOHALLEM, N.D. S. Cerâmica. 1996, 42, 312.
MOUALLEM-BAHOUT, M.; BERTRAND, S.; PEÑA, O. J. SolidState Chem. 2005, 178, 1080.
SIMONESCU, C. M.; TĂTĂRUS, A.; CULIŢĂ, D. C.; STĂNICĂ, N.;BUTOI, B.; KUNCSER, A. Nanomaterials. 2021, 11, 3128.
BALLARINI, N.; CAVANI, F.; PASSERI, S.; PESARESI, L.; LEE, A.F.; WILSON, K. APPL. Catal. A Gen. 2009, 366, 184.
SICKAFUS, K. E.; WILLS, J. M.; GRIMES, N. W.; Structure of Spinel.J. Am. Ceram. Soc. 1999, 82, 3279.
HIROTA, K.; KOMATSU, G.; YAMASHITA, M.; TAKEMURA, H.;YAMAGUCHI, O. Mater. Res. Bull. 1992, 27, 823.
ZHANG, A.; ZHANG, J. MATER. Sci-Poland. 2009, 27, 1015.
SENASU, T.; YOUNGME, S.; HEMAVIBOOL, K.; NANAN, S. J.Solid State Chem. 2021, 297, 122088.
JIANG, H.; DAI, H.; MENG, X.; ZHANG, L.; DENG, J.; LIU, Y.; AU,C. T. J. Environ. Sci. 2012, 24, 449.
GANESHBABU, M.; KANNAN, N.; VENKATESH, P. S.; PAULRAJ,G.; JEGANATHAN, K.; MubarakAli, D. RSC Adv. 2020, 10, 18315.
PHU, N. D.; HOANG, L. H.; VU, P. K.; KONG, M.-H.; CHEN, X.-B.;WEN, H. C.; CHOU, W. C. J. MATER. Sci. Mater. Electron. 2016, 27,6452.
WANG, G.; CHENG, D.; HE, T.; HU, Y.; DENG, Q.; MAO, Y.; WANG,S. J. Mater. Sci. Mater. Electron. 2019, 30, 10923.
SONU, DUTTA, V.; SHARMA, S.; RAIZADA, P.; HOSSEINIBANDEGHARAEI,A.; GUPTA, V. K.; SINGH, P. J. Saudi Chem. Soc.2019, 23, 1119.
YAN, X. L.; CHEN, Y.; LIU, B. T.; TU, M. J. MATER. Sci. Forum.2016, 852, 1429.
WANG, Y.; HUANG, J.; TAN, G.; HUANG, J.; ZHANG, L. Nano:Brief Rep. Rev. 2015, 10, 1550008.