Fabricação, Caracterização Fotofísica e Fotoquímica de Nanopartículas de Gelatina Carregadas com Azul de Toluidina para Material Nanoestruturado Promissor para Sistema de Liberação de Fármacos
Resumo
A terapia fotodinâmica (TFD) é uma modalidade de tratamento que envolve uma fonte de luz em comprimento de onda específico, um fotossensibilizador (FS) e oxigênio molecular que em conjunto levam a uma cadeia de reações responsável por causar a morte celular do alvodo tratamento. O objetivo deste trabalho foi a síntese de nanopartículas de gelatina (NPGs) encapsuladas com azul de toluidina (AT) como sistema de liberação controlada (DDS). As NPGssintetizadas foram caracterizadas por técnicas fotofísicas e fotoquímicas. As amostras apresentaram morfologia esférica, diâmetro médio de 398,50 nm e potencial zeta de +21,2 mV e +22,5 mVpara NPGs e NPGs-AT, respectivamente, com eficiência de encapsulamento de aproximadamente 85%. A espectroscopia de absorção no UV-visível não mostrou alteração no perfil espectral do AT, apresentando um perfil de liberação controlada. Conclui-se, portanto, que o sistema NPGs-AT é um potencial candidato para uso como DDS em aplicações futuras utilizando os protocolos de TFD
Referências
1. PHAM, T. C; NGUYEN, V; CHOI, Y; LEE, S; YOON, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121.
2. CORREIA, J.H; RODRIGUES, J. A; PIMENTA, S; DONG, T; YANG, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics.2021, 13, 9, 2021.
3. SRIDHARAN, G; SHANKAR, A. A. Toluidine blue: A review of its chemistry and clinical utility. J Oral Maxillofac Pathol. 2012.
4. AFKHAMI, F; KARIMI, M; BAHADOR, A; AHMADI, P; POURHAJIBAGHER, M; CHINIFORUSH, N. Evaluation of antimicrobial photodynamic therapy with toluidine blue against Enterococcus faecalis: Laser vs LED. Photodiagnosis Photodyn Ther, 2020, 32, 102036.
5. AVRAMOVI´C, N; MANDI´C, B; SAVI´C-RADOJEVI´C, A; SIMI´C, T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics. 2020,12, 298.
6. DENG, S; GIGLIOBIANCO, M.R; CENSI, R; DI MARTINO, P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials (Basel). 2020,10,5.
7. BHOWMIK, D; GOPINATH, H; KUMAR, B.P; DURAIVEL, S; KUMAR, K.P.S. Controlled Release Drug Delivery Systems. Pharma innov. 2012,1, 10.
8. WANG, S; LIU, R; FU, Y; KAO, W. J. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv, 2020,17, 9.
9. MADKHALI, O; MEKHAIL, G; WETTIG, S.D. Modified gelatin nanoparticles for gene delivery. Int. J. Pharm, 2019,554, 10.
10. KHAN, M.R; SADIQ, M. B. Importance of gelatin, nanoparticles, and their interactions in the formulation of biodegradable composite films: a review, 2021, 78.
11. VINJAMURI, B.P; PAPACHRISANTHOU, K; HAWARE, R.V; CHOUGULE, M.B. Gelatin solution pH and incubation time influences the size of the nanoparticles engineered by desolvation. J Drug Deliv Sci Technol,2021, 63, 102423.
12. COESTER, C.J; LANGER, K; VON BRIESEN, H Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J. Microencapsul. 2000,17,2.
13. SARMAH, M; BANIK, N; HUSSAIN, A; RAMTEKE, A; SHARMA, H.K; MAJI, T, K. Study on crosslinked gelatin–montmorillonite nanoparticles for controlled drug delivery applications. J Mater Sci. 2015, 50.
14. SAHOO, N; SAHOO, R.K; BISWAS, N; GUHA, A; KUOTSU, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol. 2015, 81.
15. YASMIN, R; SHAH, M; KHAN, S.A; ALI, R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev. 2016, 6, 2.
16. AZIMI, B; NOURPANAH, P; RABIEE, M; ARBAB, S. Producing Gelatin Nanoparticles as Delivery System for Bovine Serum Albumin. Iran. Biomed. J. 2014,18, 1, 2014.
17. KOLETTI, A.E; TSAROUCHI, E; KAPOURANI, A; KONTOGIANNOPOULOS, K.N; ASSIMOPOULOU, A.N; BARMPALEXIS, P. Gelatin nanoparticles for NSAID systemic administration: Quality by design and artificial neural networks implementation. Int. J. Pharm. 2020, 578, 119118.
18. FENG, X; DAI, H; MA, L; YU, Y; TANG, M; LI, Y; HU, W; LIU, T; ZHANG, Y. Nanopartículas de gelatina de grau alimentício: preparação, caracterização e aplicação preliminar para estabilizar emulsões de separação. Foods, 2019, 8, 10.
19. SHAMAREKH, K.S; GAD, H. A; SOLIMAN, M.E; SAMMOUR, O.A. Towards the production of monodisperse gelatin nanoparticles by modifed one step desolvation technique. J. Pharm. Investig, 2020, 50.
20. RASMUSSEN, M.K; PEDERSEN, J.N; MARIE, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun, 2020,11,1.
21. PAUL, P; KUMAR, G, S. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA. Spectrochim. Acta Part A: Mol. Biomol Spectrosc. 2013, 107.
22. WU, Y; LIU, M; PEI, W; ZHAO, Y; WANG, D; LIU, T; SUN, B; WANG, Q; HAN, J. Thermodynamics, in vitro release and cytotoxity studies on doxorubicin–toluidine blue O combination drugs co-loaded in aptamer-tethered DNA nanostructures. J.Mol. Liq. 2020, 320, 114390.
23. CARVALHO, J.A; ABREU, A, S; FERREIRA, V.T.P; GONÇALVES, E.P; TEDESCO, C; PINTO, J.G; FERREIRASTRIXINO,, J; BELTRAME JUNIOR, M; SIMIONI, A.S. Preparation of Gelatin Nanoparticles by Two Step Desolvation Method for Application in Photodynamic Therapy. J. Biomater. Sci. Polym. Ed. 2018, 29, 11.
24. SAXENA, A; SACHIN, K; BOHIDAR, H.B; VERMA, A.K. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids Surf. B. 2005, 45, 1, 25.
25. VANDERVOORT, J; LUDWIG, A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm. 2004, 57.
26. CHAVANPATIL, M.D; KHDAIR, A; PATIL, Y; HANDA, H; MAO, G; PANYAM, J. Polymer‐surfactant nanoparticles for sustained release of water‐soluble drugs. J. Pharm. Sci. 2007, 96,12.