O Entendimento Estrutural de Moléculas Orgânicas e suas Aplicações como Aditivos para Biocombustíveis

Palavras-chave: biocombustíveis, aditivos, entendimento estrutural

Resumo

As mudanças climáticas e a escassez de recursos naturais representam ameaças globais que afetam a sustentabilidade dos sistemas econômicos. Para enfrentar esses desafios, soluções estão sendo desenvolvidas, como a redução das emissões de poluentes e a busca por fontes de energia sustentáveis. Embora o sistema econômico dependa principalmente de combustíveis fósseis, que causam poluição e são limitados, as energias sustentáveis, como os biocombustíveis, estão ganhando importância como alternativas renováveis. No entanto, a estabilidade dos biocombustíveis é um obstáculo a ser superado, e soluções, como aditivos, estão sendo pesquisadas. Este artigo aborda as implicações dos biocombustíveis, os desafios que enfrentam e como a pesquisa estrutural e teórica pode contribuir para o desenvolvimento de aditivos para melhorar sua estabilidade. 

Referências

1. H. RATTNER, Revista de Administração de Empresas.

2. T. HANCOCK, Health Promot Int, 2011, 26, ii168–ii172.

3. T. GÜNEY, International Journal of Sustainable Development & World Ecology, 2019, 26, 389–397.

4. H.-T. PAO AND H.-C. Fu, Renewable and Sustainable Energy Reviews, 2013, 25, 381–392.

5. BLACKSMITH INSTITUTE AND G. C. SWITZERLAND,The World’s Worst Pollution Problems: Assessing Health Risks at Hazardous Waste Sites, 2012.

6. K. VOHRA, A. VODONOS, J. SCHWARTZ, E. A. MARAIS, M. P. SULPRIZIO AND L. J. MICKLEY, Environ Res, 2021, 195, 110754.

7. N. ARMAROLI AND V. BALZANI, Chem Asian J, 2011, 6, 768–784.

8. International Energy Agency, Key world energy statistics, 2010.

9. M. BLUMER, H. L. SANDERS, J. F. GRASSLE AND G. R. HAMPSON, Environment: Science and Policy for Sustainable Development, 1971, 13, 2–12.

10. A. H. S. SOLBERG, Proceedings of the IEEE, 2012, 100, 2931–2945.

11. Ministério de Minas e Energia, Biocombustíveis. 2011.

12. M. L. MEDEIROS, A. M. M. T. CORDEIRO, N. QUEIROZ, L. E. B. SOLEDADE, A. L. SOUZA AND A. G. SOUZA, Energy & Fuels, 2014, 28, 1074–1080.

13. S. KUMAR, K. YADAV AND G. DWIVEDI, Mater Today Proc, 2018, 5, 19255–19261. Jan/Jun de 2023 Revista Processos Químicos 33

14. J. PULLEN AND K. SAEED, Renewable and Sustainable Energy Reviews, 2012, 16, 5924–5950.

15. R. K. SALUJA, V. KUMAR AND R. SHAM, Renewable and Sustainable Energy Reviews, 2016, 62, 866–881.

16. N. KUMAR, Fuel, 2017, 190, 328–350.

17. F. SUNDUS, M. A. FAZAL AND H. H. MASJUKI, Renewable and Sustainable Energy Reviews, 2017, 70, 399–412.

18. M. R. JAKERIA, M. A. FAZAL AND A. S. M. A. HASEEB, Renewable and Sustainable Energy Reviews, 2014, 30, 154–163.

19. J. PULLEN AND K. SAEED, Renewable and Sustainable Energy Reviews, 2012, 16, 5924–5950.

20. M. TRINDADE, in Green Energy and Technology, 2018, p. 186.

21. S. N. NAIK, V. V. GOUD, P. K. ROUT AND A. K. DALAI,Renewable and Sustainable Energy Reviews, 2010, 14, 578–597.

22. A. DEMIRBAS, Appl Energy, 2009, 86, S108–S117.

23. M. NAQVI AND J. YAN, IN HANDBOOK OF CLEAN ENERGY SYSTEMS, JOHN WILEY & SONS, Ltd, Chichester, UK, 2015, pp. 1–18.

24. BiodieselBR, BiodieselBR.

25. K. VARATHARAJAN AND D. PUSHPARANI, Renewable and Sustainable Energy Reviews, 2018, 82, 2017–2028.

26. M. S. CAVALCANTE, L. R. V. CONCEIÇÃO, R. R. C. BASTOS, A. C. G. COSTA, G. N. ROCHA FILHO AND J. R.

ZAMIAN, Congresso Brasileiro de Química, 2012, 1.

27. F. SALOUA, C. SABER AND Z. HEDI, Bioresour Technol, 2010, 101, 3091–3096.

28. A. RAMADHAS, S. JAYARAJ AND C. MURALEEDHARAN, Fuel, 2005, 84, 335–340.

29. J. XAVIER, JOURNAL OF BIOLOGICAL SCIENCES, 2020, 20, 88–93.

30. M. LAPUERTA, O. ARMAS, R. BALLESTEROS AND J. FERNANDEZ, Fuel, 2005, 84, 773–780.

31. M. CHAKRABORTY, D. C. BARUAH AND D. KONWER, Fuel Processing Technology, 2009, 90, 1435–1441.

32. M. A. R. NASCIMENTO, E. S. LORA, O. J. VENTURINI, M. R. MALDONADO, R. V. ANDRADE, P. S. P. C. JR. AND M. A. HAIKAL, Enc. Energ. Meio Rural, 2006, 10.

33. D. SINGH AND S. P. SINGH, Biomass Bioenergy, 2010, 34, 545–549.

34. K. SURESHKUMAR, R. VELRAJ AND R. GANESAN, Renew Energy, 2008, 33, 2294–2302.

35. G. I. MARTINS, D. SECCO, H. A. ROSA, R. A. BARICCATTI, B. D. DOLCI, S. N. MELEGARI DE SOUZA, R. F. SANTOS, T. R. BENETOLI DA SILVA AND F. GURGACZ, Renewable and Sustainable Energy Reviews, 2015, 42, 154–157.

36. A. ABUHABAYA, J. D. FIELDHOUSE AND D. BROWN, Future Technologies in Computing and Engineering Annual Researchers’ Conference (CEARC’10), 2010, 71–76.

37. N. BANAPURMATH, P. TEWARI AND R. HOSMATH, Renew Energy, 2008, 33, 1982–1988.

38. A. SAYDUT, M. DUZ, C. KAYA, A. KAFADAR AND C. HAMAMCI, Bioresour Technol, 2008, 99, 6656–6660.

39. P. NAKPONG AND S. Wootthikanokkhan, Fuel, 2010, 89, 1806–1811.

40. S. PUHAN, N. VEDARAMAN, B. V. B. RAM, G. SANKARNARAYANAN AND K. JEYCHANDRAN, Biomass

Bioenergy, 2005, 28, 87–93.

41. M. U. KAISAN, S. ABUBAKAR, B. ASHOK, D. BALASUBRAMANIAN, S. NARAYAN, I. GRUJIC AND N. STOJANOVIC, Biofuels, 2021, 12, 757–768.

42. A. ABUHABAYA, J. D. FIELDHOUSE AND D. BROWN, Evaluation of Properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine, 2010.

43. P. SCHINAS, G. KARAVALAKIS, C. DAVARIS, G. ANASTOPOULOS, D. KARONIS, F. ZANNIKOS, S. STOURNAS AND E. LOIS, Biomass Bioenergy, 2009, 33, 44–49.

44. M. R. RIGOTTE, Desempenho de conjunto motor-gerador utilizando biocombustíveis sob cargas variadas, 2014.

45. M. U. KAISAN, S. ABUBAKAR, B. ASHOK, D. BALASUBRAMANIAN, S. NARAYAN, I. GRUJIC AND N.

STOJANOVIC, Biofuels, 2021, 12, 757–768.

46. P. K. SAHOO, L. M. DAS, M. K. G. BABU AND S. N. NAIK, Fuel, 2007, 86, 448–454.

47. S. ÇAYNAK, M. GÜRÜ, A. BIÇER, A. KESKIN AND Y. İÇINGÜR, Fuel, 2009, 88, 534–538.

48. C. KAYA, C. HAMAMCI, A. BAYSAL, O. AKBA, S. ERDOGAN AND A. SAYDUT, Renew Energy, 2009, 34,

–1260.

49. S. SINHA, A. K. AGARWAL AND S. GARG, Energy Convers Manag, 2008, 49, 1248–1257.

50. S. KALLIGEROS, F. ZANNIKOS, S. STOURNAS, E. LOIS, G. ANASTOPOULOS, C. TEAS AND F. SAKELLAROPOULOS, Biomass Bioenergy, 2003, 24, 141–149.

51. Agência Brasil, Revista Processos Químicos Jan/Jun de 2023 Artigo Geral 2.

52. Terrabrasilis, Mapa de vegetação.

53. Instituto Nacional de Pesquisas Espaciais.

54. World Wide Fund for Nature (WWF), Ameaças ao Cerrado, água (bloqueio por terra).

55. G. KNOTHE AND L. F. RAZON. 2016.

56. R. ALIZADEH, P. D. LUND AND L. SOLTANISEHAT,Renewable and Sustainable Energy Reviews, 2020, 134, 110326.

57. G. KNOTHE, Fuel Processing Technology, 2007, 88, 669–677.

58. N. KUMAR, Fuel, 2017, 190, 328–350.

59. G. KARAVALAKIS AND S. STOURNAS, Energy & Fuels, 2010, 24, 3682–3686.

60. K. ALAGU, B. NAGAPPAN, J. JAYARAMAN AND A. ARUL GNANA DHAS, Environmental Science and Pollution Research, 2018, 25, 17634–17644.

61. K. VARATHARAJAN AND D. S. PUSHPARANI, Renewable and Sustainable Energy Reviews, 2018, 82, 2017–2028.

62. M. MITTELBACH AND S. SCHOBER, J Am Oil Chem Soc, 2003, 80, 817–823.

63. J. PULLEN AND K. SAEED, Renewable and Sustainable Energy Reviews, 2012, 16, 5924–5950.

64. Z. YAAKOB, B. N. NARAYANAN, S. PADIKKAPARAMBIL, S. UNNI K. AND M. AKBAR P., Renewable and Sustainable Energy Reviews, 2014, 35, 136–153.

65. B. W. STAMPS, C. L. BOJANOWSKI, C. A. DRAKE, H. S. NUNN, P. F. LLOYD, J. G. FLOYD, K. A. EMMERICH, A. R. NEAL, W. J. CROOKES-GOODSON AND B. S. STEVENSON, Front Microbiol.

66. T. JOSE AND K. ANAND, Fuel, 2016, 177, 190–196.

67. D. SINGH, D. SHARMA, S. SONI, S. SHARMA, P. SHARMA AND A. JHALANI, Fuel, 2020, 262, 116553.

68. A. DUDEK, T. ARODZ AND J. GALVEZ, Comb Chem High Throughput Screen, 2006, 9, 213–228.

69. C. C. DA SILVA, B. S. PACHECO, DE F. COELHO, SAMANTHA, L. M. BERNEIRA, M. A. Z. DOS SANTOS, L. P.

PIZZUTI AND C. M. PEREIRA, in Increased Biodiesel Efficiency, 2018, pp. 81–110.

70. C. ZHUANG, W. ZHANG, C. SHENG, W. ZHANG, C. XING AND Z. MIAO, Chem Rev, 2017, 117, 7762–7810.

71. C. B. PATIL, S. K. MAHAJAN AND S. A. KATTI, Journal of Pharmaceutical Sciences and Research, 2009, 1, 11–22.

72. S. FRANCESCHELLI, M. PESCE, I. VINCIGUERRA, A. FERRONE, G. RICCIONI, P. ANTONIA, A. GRILLI, M.

FELACO AND L. SPERANZA, Molecules, 2011, 16, 5720–5734.

73. C. SULPIZIO, A. ROLLER, G. GIESTER AND A. ROMPEL, Monatshefte für Chemie - Chemical Monthly.

74. B. P. BANDGAR, S. S. GAWANDE, R. G. BODADE, J. V. TOTRE AND C. N. KHOBRAGADE, Bioorg Med Chem, 2010, 18, 1364–1370.

75. Y. OHKATSU AND T. SATOH, Journal of the Japan Petroleum Institute, 2008, 51, 298–308.

76. B. MATHEW, A. A. ADENIYI, M. JOY, G. E. MATHEW, A. SINGH-PILLAY, C. SUDARSANAKUMAR, M. E. S.

SOLIMAN AND J. SURESH, J Mol Struct, 2017, 1146, 301–308.

77. P. M. SIVAKUMAR, V. PRABHAWATHI AND M. DOBLE, SAR QSAR Environ Res, 2010, 21, 247–263.

78. Ü. Ö. ÖZDEMIR, P. GÜVENÇ, E. ŞAHIN AND F. HAMURCU, INORGANICA CHIM ACTA, 2009, 362, 2613–2618.

79. O. O. AJANI, C. A. OBAFEMI, O. C. NWINYI AND D. A. AKINPELU, Bioorg Med Chem, 2010, 18, 214–221.

80. W. A. SILVA, C. K. Z. ANDRADE, H. B. NAPOLITANO, I. VENCATO, C. LARIUCCI, M. M. R. C. DE CASTRO AND A. J. CAMARGO, J Braz Chem Soc, 2013, 24, 133–144.

81. H. N. ELSOHLY, A. S. JOSHI, A. C. NIMROD, L. A. WALKER AND A. M. CLARK, Planta Med, 2001, 67, 87–89.

82. A. DAS RAJAT GHOSH, 2014, 3, 578–595.

83. Y. DENG, Y. HE, T. ZHAN AND Q. HUANG, Carbohydr Res, 2010, 345, 1872–1876.

84. Y. XUE, Y. ZHENG, L. AN, L. ZHANG, Y. QIAN, D. YU, X. GONG AND Y. LIU, Comput Theor Chem, 2012, 982, 74–83.

85. C. A. MOREIRA, E. C. M. FARIA, J. E. QUEIROZ, V. S. DUARTE, M. DO N. GOMES, A. M. DA SILVA, R. L. G. DE PAULA, C. H. J. FRANCO, E. H. DE S. CAVALCANTI, G. L. B. DE AQUINO and H. B. NAPOLITANO, Fuel Processing

Technology, 2022, 227, 107122.86. C. DA SILVA, B. PACHECO, S. DE FREITAS, L. BERNEIRA, M. DOS SANTOS, L. PIZZUTI AND C. DE PEREIRA, Increased Biodiesel Efficiency, 2018, 81–110.

86. Patent BR 10 2013 030049 7 A2, 2013.

87. E. J. ; LENARDÃO, A. M. ; BARCELLOS, F. ; PENTEADO, D. ; ALVES and G. PERIN, 2017, 192–237.

88. V. V. KOUZNETSOV, C. M. MELÉNDEZ GÓMEZ, J. L. V. PEÑA AND L. Y. VARGAS-MÉNDEZ, in Discovery and

Development of Therapeutics from Natural Products Against Neglected Tropical Diseases, Elsevier, 2019, pp. 87–164.Jan/Jun de 2023 Revista Processos Químicos 3590. A. OLIVA, K. M. MEEPAGALA, D. E. WEDGE, D. HARRIES, A. L. HALE, G. ALIOTTA AND S. O. DUKE, J Agric Food Chem, 2003, 51, 890–896.

89. Y.-L. CHEN, K.-C. FANG, J.-Y. SHEU, S.-L. HSU AND C.-C. TZENG, J Med Chem, 2001, 44, 2374–2377.

90. L. M. NAINWAL, S. TASNEEM, W. AKHTAR, G. VERMA, M. F. KHAN, S. PARVEZ, M. SHAQUIQUZZAMAN, M. AKHTER and M. M. ALAM, Eur J Med Chem, 2019, 164, 121–170.

91. A. MARELLA, O. P. TANWAR, R. SAHA, M. R. ALI, S. SRIVASTAVA, M. AKHTER, M. SHAQUIQUZZAMAN and M. M. ALAM, Saudi Pharmaceutical Journal, 2013, 21, 1–12.

92. P. SHI, L. WANG, K. CHEN, J. WANG and J. ZHU, Org Lett, 2017, 19, 2418–2421.

93. E. RAGA, M. ESCOLANO, J. TORRES, F. RABASAALCAÑIZ, M. SÁNCHEZ-ROSELLÓ AND C. DEL POZO, Adv

Synth Catal, 2019, 361, 1102–1107.

94. L. SAVEGNAGO, A. I. VIEIRA, N. SEUS, B. S. GOLDANI, M. R. CASTRO, E. J. LENARDÃO AND D. ALVES, Tetrahedron Lett, 2013, 54, 40–44.

95. M.-A. YOON, T.-S. JEONG, D.-S. PARK, M.-Z. XU, H.-W. OH, K.-B. SONG, W. S. LEE AND H.-Y. PARK, Biol Pharm Bull, 2006, 29, 735–739.

96. M. SANKARAN, C. KUMARASAMY, U. CHOKKALINGAM and P. S. MOHAN, BIOORG MED CHEM LETT, 2010, 20, 7147–7151.

97. C. PRAVEEN, P. DHEENKUMAR, D. MURALIDHARAN and P. T. PERUMAL, Bioorg Med Chem Lett, 2010, 20, 7292–7296.100. M. ORHAN PUSKULLU, B. TEKINER AND S. SUZEN, Mini Rev Med Chem, 2013, 13, 365–372.

98. D. KAMINSKY and R. I. MELTZER, J Med Chem, 1968, 11, 160–163. 102. U. FUHR, E. M. ANDERS, G. MAHR, F. SÖRGEL and A. H. STAIB, ANTIMICROB AGENTS CHEMOTHER, 1992, 36, 942–948.

99. D. T. W. CHU and P. B. FERNANDES, 1991, pp. 39–144.

100. M. P. WENTLAND and J. B. CORNETT, 1985, pp. 145–154.

101. R. MUSIOL, M. SERDA, S. HENSEL-BIELOWKA and J. POLANSKI, Curr Med Chem, 2010, 17, 1960–1973.

102. B. ZHANG, Arch Pharm (Weinheim), 2019, 352, 1800382.

103. A. POLAK, Mycoses, 1990, 33, 172–178.

104 .O. MOUSSAOUI, S. BYADI, M. EDDINE HACHIM, R. SGHYAR, L. BAHSIS, K. MOSLOVA, A. ABOULMOUHAJIR, Y. K. RODI, Č. PODLIPNIK, E. M. EL HADRAMI and S. CHAKROUNE, J Mol Struct, 2021, 1241, 130652.

105. J. P. S. FERREIRA, S. M. CARDOSO, F. A. ALMEIDA PAZ, A. M. S. SILVA and V. L. M. SILVA, New Journal of Chemistry, 2020, 44, 6501–6509.

106. I. KOSTOPOULOU, A. DIASSAKOU, E. KAVETSOU, E. KRITSI, P. ZOUMPOULAKIS, E. PONTIKI, D.

HADJIPAVLOU-LITINA and A. DETSI, Mol Divers, 2021, 25, 723–740.

107. I. HAMLAOUI, R. BENCHERAIET, R. BENSEGUENI and M. BENCHARIF, J Mol Struct, 2018, 1156, 385–389.

108. C. H. PRAVEEN KUMAR, M. S. KATAGI and B. P. NANDESHWARAPPA, Chemical Data Collections, 2022, 42, 100955.

109. S. SARVESWARI, V. VIJAYAKUMAR, R. SIVA and R. PRIYA, Appl Biochem Biotechnol, 2015, 175, 43–64.

110. M. I. ABDULLAH, A. MAHMOOD, M. MADNI, S. MASOODand M. KASHIF, Bioorg Chem, 2014, 54, 31–37.

111. C.-J. ZHENG, S.-M. JIANG, Z.-H. CHEN, B.-J. Ye and H.-R. PIAO, Arch Pharm (Weinheim), 2011, 344, 689–695.

112. N. S. RAO, A. B. SHAIK, S. R. ROUTHU, S. M. A. HUSSAINI, S. SUNKARI, A. V. S. RAO, A. M. REDDY, A. ALARIFI AND A. KAMAL, ChemistrySelect, 2017, 2, 2989–2996.

113. Y.-F. GUAN, X.-J. LIU, X.-Y. YUAN, W.-B. LIU, Y.-R. LI, G.-X. YU, X.-Y. TIAN, Y.-B. ZHANG, J. SONG, W. LI AND S.-Y. ZHANG, MOLECULES, 2021, 26, 4899.

114. S. MIRZAEI, F. HADIZADEH, F. EISVAND, F. MOSAFFA AND R. GHODSI, J Mol Struct, 2020, 1202, 127310.

115. K. V. SASHIDHARA, S. R. AVULA, V. MISHRA, G. R. PALNATI, L. R. SINGH, N. SINGH, Y. S. CHHONKER, P.

SWAMI, R. S. BHATTA AND G. PALIT, Eur J Med Chem, 2015, 89, 638–653.

116. J. C. COA, E. GARCÍA, M. CARDA, R. AGUT, I. D. VÉLEZ, J. A. MUÑOZ, L. M. YEPES, S. M. ROBLEDO and W. I. CARDONA, Medicinal Chemistry Research, 2017, 26, 1405–1414.

117. D. ATUKURI, V. S, S. R, V. L, P. R and R. M.M, Bioorg Chem, 2020, 105, 104419.

118. M. F. A. MOHAMED and G. E.-D. A. ABUO-RAHMA, RSC Adv, 2020, 10, 31139–31155.

119. M. ROUSSAKI, B. HALL, S. C. LIMA, A. C. DA SILVA, S. WILKINSON and A. DETSI, Bioorg Med Chem Lett, 2013, 23, 6436–6441.

120. M. R. GRIMMETT, Imidazole and Benzimidazole Synthesis, Academic Press, San Diego, 2005.

121. T. BENINCORI and F. SANNICOLÒ, J Heterocycl Chem, 1988, 25, 1029–1033. 36 Revista Processos Químicos Jan/Jun de 2023. Artigo Geral 2.

122. CH. ROSENBLUM and H. T. MERIWETHER, Journal of Radioanalytical Chemistry, 1970, 6, 379–384.

123. N. SINGH, A. PANDURANGAN, K. RANA, P. ANAND, A. AHAMAD and A. K. TIWARI, International Current Pharmaceutical Journal, 2012, 1, 110–118.

124. F. FEI AND Z. ZHOU, Expert Opin Ther Pat, 2013, 23, 1157–1179.

125. V. A. KOSOLAPOV, A. A. SPASOV, V. A. АNISIMOVA and O. N. ZHUKOVSKAYA, in Antioxidants, IntechOpen, 2019.

126. S. RAJASEKARAN, R. GOPALKRISHNA and A. CHATTERJEE, International Journal of Drug Development and Research, 2012, 4, 303–309.

127. A. TS. MAVROVA, D. YANCHEVA, N. ANASTASSOVA, K. ANICHINA, J. ZVEZDANOVIC, A. DJORDJEVIC, D.

MARKOVIC and A. SMELCEROVIC, Bioorg Med Chem, 2015, 23, 6317–6326.

128. S. R. M. DE BITTENCOURT, J. O. M. MENTEN, C. A. DOS S. ARAKI, M. H. D. DE MORAES, A. DA R. RUGAI, M. J. DIEGUEZ and R. D. VIEIRA, Revista Brasileira de Sementes,2007, 29, 214–222.

129. R. M. HAUPTMANN, J. M. WIDHOLM and J. D. PAXTON, Plant Cell Rep, 1985, 4, 129–132.

CAS Number: 10605-21-7, 2019.

130 . E. NAUHA, H. SAXELL, M. NISSINEN, E. KOLEHMAINEN, A. SCHÄFER and R. SCHLECKER, CrystEngComm, 2009, 11, 2536.

131. APVMA. Australian Pesticide and Veterinary Medicines Authority., 2010.

132. USEPA. United States Environmental Protection Agency.

133. B. D. (Bernard D. Cullity and S. R. Stock, Elements of x-ray diffraction, Prentice Hall, 2001.

134. J. PICKWORTH. GLUSKER and K. N. TRUEBLOOD, Crystal structure analysis : a primer, Oxford University Press, 2010.

135. CARMELO. GIACOVAZZO, Fundamentals of crystallography, Oxford University Press, 2011.

136. M. M. WOOLFSON, An introduction to X-ray crystallography, Cambridge University Press, United Kingdom, 2nd edn, 1997.

137. C. F. MACRAE, I. J. BRUNO, J. A. CHISHOLM, P. R. GINGTON, P. MCCABE, E. PIDCOCK, L. RODRIGUEZ MONGE, R. TAYLOR, J. VAN DE STREEK and P. A. WOOD, J Appl Crystallogr.

138. M. A. S. S.K. WOLFF, D.J. GRIMWOOD, J.J. MCKINNON, M.J. TURNER, D. JAYATILAKA, M. J. TURNER, J. J. MCKINNON, S. K. WOLFF, D. J. GRIMWOOD, P. R. SPACKMAN, D. JAYATILAKA and M. A. SPACKMAN, University of Western Australia, 2012.

139. A. D. MCLEAN AND G. S. CHANDLER, J Chem Phys, 1980, 72, 5639–5648.

140. R. KRISHNAN, J. S. BINKLEY, R. SEEGER and J. A. POPLE, J Chem Phys, 1980, 72, 650–654.

141. M. J. ; FRISCH, G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R. CHEESEMAN, G. SCALMANI, V. BARONE, B. MENNUCCI, G. A. PETERSSON, H. NAKATSUJI, M. CARICATO, X. LI, H. P. HRATCHIAN, A. F. IZMAYLOV, J. BLOINO, Z. G., J. L. SONNENBERG, M. HADA, M. EHARA, K. TOYOTA, R. FUKUDA, J. HASEGAWA, M. ISHIDA, T. NAKAJIMA, H. Y., O. KITAO, H. NAKAI, T. VREVEN, J. A. MONTGOMERY JR., J. E. PERALTA, F. OGLIARO, M. BEARPARK, J. J. HEYD, K. N. BROTHERS E.; KUDIN, V. N. STAROVEROV, R. KOBAYASHI, N. J., K. RAGHAVACHARI, A. RENDELL, J. C. BURANT, S. S. IYENGAR, J. TOMASI, M. COSSI, N. REGA, J. M. MILLAM, M. KLENE, J. E. KNOX, J. B. CROSS, V. BAKKEN, C. ADAMO, J. J., R. GOMPERTS, R. E. STRATMANN, O. YAZYEV, A. J. AUSTIN, R. CAMMI, C. POMELLI, J. W. OCHTERSKI, R. L. MARTIN, K. MOROKUMA, V. G. ZAKRZEWSKI, G. A. VOTH, P. SALVADOR, J. J. DANNENBERG, S. DAPPRICH, A. D. DANIELS, Ö. FARKAS, J. B. FORESMAN, J. V ORTIZ, J. CIOSLOWSKI and D. J. FOX, .

Publicado
2023-10-13
Como Citar
Duarte, V. S., & Napolitano, H. B. (2023). O Entendimento Estrutural de Moléculas Orgânicas e suas Aplicações como Aditivos para Biocombustíveis. Revista Processos Químicos, 17(33), 27-37. https://doi.org/10.19142/rpq.v17i33.679