Estudo do Efeito da Concentração de Gelatina na Morfologia e no Grau de Intumescimento do Hidrogel
Resumo
Os sistemas hidrogel vem ganhando cada vez mais espaço em aplicações conjuntas com a engenharia biomédica. A Terapia fotodinâmica (TFD) é uma modalidade de tratamento que se baseia na combinação de um fotossensibilizador (FS), luz e o oxigênio molecular levando a formação de espécies reativas (ROS), como o oxigênio singleto, responsável pela morte celular do alvo. O objetivo do trabalho foi avaliar a influência da concentração de gelatina e da reticulação em três grupos de hidrogel. Os resultados foram avaliados por microscopia eletrônica de varredura (MEV) e quanto a capacidade de intumescimento (% GI).
Referências
1. CHEN, T; YAO, T; PENG, H; WHITTAKER, A. K; LI, Y; ZHU, S; WANG, Z. An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystal. Adv. Funct. Mater. v.31, n.45, p.1-12, 2021.
2. CASTILHO-FERNANDES, A; LOPES, T.G; PRIMO, F.L; PINTO, M.R; TEDESCO, A.C. Photodynamic process induced by chloro-aluminum phthalocyaninenanoemulsion in glioblastoma. Photodiagnosis and Photodynamic Therapy. v.19, p. 221-228, 2017.
3. SANTOS, A.F; ALMEIDA, D.R.Q; TERRA, L.F, BAPTISTA, M.S, LABRIOLA, L. Photodynamic therapy in cancer treatment – an update review. J Cancer Metastasis Treat, v.5, n.25, p.1-20, 2019.
4. SILVA, D.N.A; SILVA, N.T; SENA, I.A.A; AZEVEDO, M.L.S; SILVA JÚNIOR, F.L; SILVA, R.C.M; VASCONCELOS, R.C; MORAES, M.M; LONGO, J.P.F; ARAÚJO, A.A; MARTINS, A.R.L.A. Efficacy of antimicrobial photodynamic therapy with chloro-aluminumphthalocyanine on periodontal clinical parameters and salivary GSH and MDA levels in patients with periodontitis. Photodiagnosis and Photodynamic Therapy. v.31, p.1-6, 2020.
5. MOHAMMED, I; OLUWOLE, D.O; NEMAKAL, M; SANNEGOWDA, L.K; NYOKONG, T. Investigation of novel substituted zinc and aluminium phthalocyanines forphotodynamic therapy of epithelial breast câncer. Dyes and Pigments. v.170, p.1-11, 2019.
6. ALGAHTANI, M. S; AHMAD, M.Z; AHMAD, J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J. Drug Delivery Sci. Technol. v.59, p.1-12, 2020.
7. CAPANEMA, N.S.V; MANSUR, A.A.P; CARVALHO, S.M; CARVALHO, I.C; CHAGAS, P; OLIVEIRA; L.C.A; MANSUR, H.S. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels fortopical chemotherapy of melanoma skin câncer. Carbohydr. Polym. v.195, p. 401-412, 2018.
8. LIU, H; WANG, C; LI, C; QIN, Y; WANG, Z; YANG, F; LI, Z; WANG, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. v.8, p.7533-7549, 2018.
9. HOSSEN, S; HOSSAIN, M.K; BASHER, M.K; MIA, M.N.H; RAHMAN, M.T; UDDIN, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. v.15, p.1-18, 2019.
10. ZHAO, X; LANG, Q; YILDIRIMER, L; LIN,Z. Y; CUI, W; ANNABI, N; WOEI NG, K; DOKMECI, M.R; GHAEMMAGHAMI, A.M; KHADEMHOSSEINI, K. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Adv. Healthcare Mater. v.5, n.1, p.108-118, 2015.
11. YU, W; LIU, R; ZHOU, Y; GAO, H. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Cent. Sci. v.6, p.100−116, 2020.
12. FRACHINI, E.C.G; PETRI, D.F.S. Magneto-Responsive Hydrogels: Preparation, Characterization, Biotechnological and Environmental Applications. J. Braz. Chem. Soc. v.30, n.10, p.2010-2028, 2019.
13. EL-HALAH, A; GONZÁLEZ, N; CONTRERAS, J; LÓPEZ-CARRASQUERO, F. Effect of the synthesis solvent in swelling ability of polyacrylamide hydrogels. J Polym Res. v.27, n.21, p.1-10, 2020.
14. UNAGOLLA, J.M; JAYASURIYA, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today. v.18, n.100479, p.1-22, 2020.
15. ZHOU, X; ZHAO, F; GUO, Y; ROSENBERGER, B; YU, G. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. v.5, n.6, p.1-7, 2019.
16. EFE, H; BICEN, M; KAHRAMAN, M.V; KAYAMAN-APOHAN, N. Synthesis of 4-Acryloylmorpholine-based Hydrogels and Investigation of their Drug Release Behaviors. J. Braz. Chem. Soc. v.24, n.5, p. 814-820, 2013.
17. BANG, S; JUNG, U; NOH, I. Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate–Gelatin Hydrogel for Tissue Engineering. Tissue Engineering and Regenerative Medicine. v.15, p.25–35, 2018.
18. POELLMANN, M.J; HARRELL, P.A; KING, W.P; JOHNSON, A.J.W. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomaterialia.v.6, n.9, p.3514-3523, 2010.
19. TREESUPPHARAT, W; ROJANAPANTHU, P; SIANGSANOH, C; MANUSPIYA, H; UMMARTYOTIN, S. Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnology Reports. v.15, p.84-91, 2017.
20. CLAUS J, BRIETZKE A, LEHNERT C, OSCHATZ S, GRABOW N, KRAGL U. Swelling characteristics and biocompatibility of ionic liquid based hydrogels for biomedical applications. PLoS One. v.15, n.4, 2020.
21. ZHAO, Y; SUN, Z. Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int J Food Prop. v.20, n.S3, p.S2822–S2832, 2017.
22. XING, Q; YATES, K; VOGT, C; QIAN, Z; FROST, M.C; ZHAO, F. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal. Sci. Rep.v.4, n.4706, p. 1-10, 2014.
23. YACOB, N; HASHIM, K. Morphological Effect on Swelling Behaviour of Hydrogel. AIP Conference Proceedings . v.1584, n.153, p.1-8, 2014.
24. NOH, I; KIM, N; TRAN, H.N; LEE, J; LEE, C.3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res. v.23, n.3, p.1-9, 2019.
25. MAITRA, J; SHUKLA, V. K. Cross-linking in Hydrogels - A Review. American Journal of Polymer Science. v.4, n.2, p.25-31, 2014.
26. NAGHIEH, S; SARKER, M.D; SHARMA, N.K; BARHOUMI, Z; CHEN, X. Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Appl. Sci. v.10, n.292, p.1-18, 2020.
27. MOUSAVI, S; KHOSHFETRAT, A. B; KHATAMI, N; AHMADIAN, M; RAHBARGHAZI, R. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cellbehavior. Biochemical and Biophysical Research Communications.v.518, p.625-631, 2019.
Copyright (c) 2022 Revista Processos Químicos
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.