Revisão Sistemática da Utilização de Far-UVC e Ozônio no Combate à Covid-19 e demais Patógenos
Resumo
Frente ao desafio de explorar novos meios de uma mitigação eficiente e acessível para inativação de patógenos e limitar sua transmissão em ambientes ocupados por pessoas, surgiu a iniciativa desta investigação que teve como objetivo primário realizar uma revisão sistemática, buscando na literatura o
estado da arte em relação à utilização de radiação UVC e Ozônio como agentes germicidas no combate de vírus e bactérias.Foram pesquisados nos bancos de dados trabalhos que continham as strings “UVC" AND "wave" AND "ultraviolet" AND "radiation" AND "light" AND" intensity" e também “ozone" AND "air"
AND "disinfection" AND "virus" AND "bacteria" AND "environment" AND "decontamination" AND "air decontamination". A busca foi feita nas bases de dados ScienceDirect, Web of Science, pubMED, SciELO, Google Scholar e World Wide Science. Foram encontrados 189 artigos relacionados à utilização de UVC como
agente germicida e 16 artigos acerca da utilização do ozônio, totalizando assim 205 artigos. Destes somente 44 foram selecionados para a revisão, os outros trabalhos não foram selecionados, pois não se enquadraram no critério de seleção, seja por possuir uma aplicação diferente da proposta pelo grupo, exemplo artigos que relacionavam a utilização da radiação UVC no tratamento de águas residuais ou por a data de publicação não se enquadrar no período de 2016 a 2020, nenhum artigo utilizando ambos os agentes germicidas ozônio e UVC foi encontrado. Entretanto, entres os artigos selecionados, foram relatadas informações importantes e promissoras para dar firmamento e veracidade às premissas adotadas pelos pesquisadores.
Referências
1. Huang, C. et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet395, 497–506 2020.
2. Ma, J. Coronavirus: China’s first confirmed Covid-19 case traced back to November 17.
3. OMS. WHO Coronavirus Disease (COVID-19) Dashboard.
4. Buonanno, M., Welch, D., Shuryak, I. & Brenner, D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep.10, 10285 2020.
5 . de Robles, D. & Kramer, S. W. Improving Indoor Air Quality through the Use of Ultraviolet Technology in Commercial Buildings. Procedia Eng.196, 888–894 2017.
6. Mustapha, A., Alhmidi, H., Cadnum, J. L., Jencson, A. L. & Donskey, C. J. Efficacy of manual cleaning and an ultraviolet C room decontamination device in reducing health care–associated pathogens on hospital floors. Am. J. Infect. Control46, 584–586 2018.
7. Yang, Y. et al. Investigation of ultrafast optical nonlinearities in novel bis-chalcone derivatives. Opt. Laser Technol.123, 105903 2020.
8. LAM, K. K. K. Ozone Disinfection of SARS-Contaiminated Areas. 2860, 1–6 2003.
9. Rowen, R. J. Ozone and oxidation therapies as a solution to the emerging crisis in infectious disease management: A review of current knowledge and experience. Med. Gas Res.9, 232–237 2019.
10. Yano, H. et al. Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by gaseous ozone treatment. J. Hosp. Infect.106, 837–838 2020.
11. Yao, M., Zhang, L., Ma, J. & Zhou, L. On airborne transmission and control of SARS-Cov-2. Sci. Total Environ.731, 139178 2020.
12. Kowalski, W. J., Bahnfleth, W. P. & Whittam, T. S. Bactericidal Effects of High Airborne Ozone Concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng.20, 205–221 1998.
13. Martínez-Sánchez, G., Schwartz, A. & Di Donna, V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/ COVID-19. Antioxidants9, 389 2020.
14. Dubuis, M.-E. et al. Ozone efficacy for the control of airborne viruses: Bacteriophage and norovirus models. PLoS One15, e0231164 (2020).
15. Nunayon, S. S., Zhang, H. H. & Lai, A. C. K. A novel upper-room UVC-LED irradiation system for disinfection of indoor bioaerosols under different operating and airflow conditions. J. Hazard. Mater.396, 122715 2020.
16. Anis, H. K. et al. In-Room Ultraviolet Air Filtration Units Reduce Airborne Particles During Total Joint Arthroplasty. J. Orthop. Res.38, 431–437 2020.
17. Fukui, T. et al. Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans. PLoS One15, 1–13 2020.
18. Bak, J., Ladefoged, S. D., Tvede, M., Begovic, T. & Gregersen, A. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Biofouling 26, 31–38 2010.
19. Heredia-Rodríguez, M. et al. Impact of an ultraviolet air sterilizer on cardiac surgery patients, a randomized clinical trial. Med. Clin. (Barc).151, 299–307 2018.
20. Anderson, D. J. et al. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet389, 805–814 2017.
21. Akari. O mais seguro e moderno sistema de descontaminação de água e ar: a Luz Ultravioleta C.
22. Buonanno, M. et al. 207-nm UV light - A promising tool for safe lowcost reduction of surgical site infections. II: In-vivo safety studies. PLoS One11, 1–12 2016.
23. Rodriguez-Martinez, C. E., Sossa-Briceño, M. P. & Cortés, J. A. Decontamination and reuse of N95 filtering facemask respirators: A systematic review of the literature. Am. J. Infect. Control48, 1520– 1532 2020.
24. Malhotra, S. et al. Shining a light on the pathogenicity of health care providers’ mobile phones: Use of a novel ultraviolet-C wave disinfection device. Am. J. Infect. Control48, 1370–1374 2020.
25. Bentley, J. J., Santoro, D., Gram, D. W., Dujowich, M. & Marsella, R. Can ultraviolet light C decrease the environmental burden of antimicrobial-resistant and -sensitive bacteria on textiles? Vet. Dermatol.27, 457-e121 2016.
26. Messina, G. et al. Time Effectiveness of Ultraviolet C Light (UVC) Emitted by Light Emitting Diodes (LEDs) in Reducing Stethoscope Contamination. Int. J. Environ. Res. Public Health13, 940 (2016).
27. Mackenzie, D. Ultraviolet Light Fights New Virus. Engineering6, 851–853 2020.
28. Rubio-Romero, J. C., Pardo-Ferreira, M. del C., Torrecilla-García, J. A. & Calero-Castro, S. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic. Saf. Sci.129, 104830 2020.
29. Mills, D., Harnish, D. A., Lawrence, C., Sandoval-Powers, M. & Heimbuch, B. K. Ultraviolet germicidal irradiation of influenzacontaminated N95 filtering facepiece respirators. Am. J. Infect. Control46, e49–e55 2018.
30. Memarzadeh, F., Olmsted, R. N. & Bartley, J. M. Applications of ultraviolet germicidal irradiation disinfection in health care facilities: Effective adjunct, but not stand-alone technology. Am. J. Infect. Control38, S13–S24 2010.
31. Yang, J.-H., Wu, U.-I., Tai, H.-M. & Sheng, W.-H. Effectiveness of an ultraviolet-C disinfection system for reduction of healthcare-associated pathogens. J. Microbiol. Immunol. Infect.52, 487–493 2019.
32. Welch, D. et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep.8, 2752 2018.
33. Shaikh, A. A. et al. Evaluation of a low-intensity ultraviolet-C radiation device for decontamination of computer keyboards. Am. J. Infect. Control44, 705–707 2016.
34. Allen, O. et al. Microbiological evaluation of UV disinfection effectiveness in a specialist cystic fibrosis clinic. J. Cyst. Fibros.18, e37–e39 2019.
35. Byrns, G. et al. The uses and limitations of a hand-held germicidal ultraviolet wand for surface disinfection. J. Occup. Environ. Hyg.14, 749–757 (2017).
36. Cadnum, J. L. et al. Effectiveness of ultraviolet-c light and a highlevel disinfection cabinet for decontamination of n95 respirators. Pathog. Immun.5, 52–67 2020.
37. Watson, J. D. & Crick, F. H. C. THE STRUCTURE OF DNA. Cold Spring Harb. Symp. Quant. Biol.18, 123–131 1953.
38. Barnard, I. R. M., Eadie, E. & Wood, K. Further evidence that farUVC for disinfection is unlikely to cause erythema or pre-mutagenic DNA lesions in skin. Photodermatol. Photoimmunol. Photomed.36, 476–477 2020.
39. Lindblad, M., Tano, E., Lindahl, C. & Huss, F. Ultraviolet-C decontamination of a hospital room: Amount of UV light needed. Burns46, 842–849 2020.
40. Buonanno, M., Welch, D., Shuryak, I. & Brenner, D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep.10, 1–8 2020.
41. Ciofi-Silva, C. L. et al. Norovirus recovery from floors and air after various decontamination protocols. J. Hosp. Infect.103, 328–334 2019.
42. Raggi, R., Archulet, K., Haag, C. W. & Tang, W. Clinical, operational, and financial impact of an ultraviolet-C terminal disinfection intervention at a community hospital. Am. J. Infect. Control46, 1224– 1229 2018.
43. Narita, K. et al. Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. J. Hosp. Infect.105, 459–467 2020.
44. Yamano, N. et al. Long-term Effects of 222-nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation. Photochem. Photobiol.96, 853–862 2020.
45. Cooper, J., Bryce, E., Astrakianakis, G., Stefanovic, A. & Bartlett, K. Efficacy of an automated ultraviolet C device in a shared hospital bathroom. Am. J. Infect. Control44, 1692–1694 2016.
46. Hanamura, N., Ohashi, H., Morimoto, Y., Igarashi, T. & Tabata, Y. Viability evaluation of layered cell sheets after ultraviolet light irradiation of 222 nm. Regen. Ther.14, 344–351 2020.
47. Resendiz, M., Horseman, T. S., Lustik, M. B., Nahid, A. & West, G. F. Comparative effectiveness of rapid-cycle ultraviolet decontamination to chemical decontamination on high-touch communication devices. Am. J. Infect. Control47, 1135–1139 2019.
48. Das, U. N. Bioactive Lipids in COVID-19-Further Evidence. Arch. Med. Res. 2020.
49. Lim, M. Y., Kim, J.-M., Lee, J. E. & Ko, G. Characterization of Ozone Disinfection of Murine Norovirus. Appl. Environ. Microbiol.76, 1120–1124 2010.