Síntese de Condutores Protônicos de Cerato de Estrôncio (SrCeO 3) pelo Método dos Precursores Poliméricos para Uso em Células a Combustíveis
Resumo
O crescente aumento tecnológico traz consigo a necessidade de se produzir novos materiais que atendam tal evolução de maneira sustentável. Nesse sentido, o estudo de perovskitas de cerato de estrôncio SrCeO3 torna-se de grande relevância, visto que estes materiais possuem propriedade de condução protônica e são bastante utilizadas como eletrólito sólido para células a combustíveis de óxido sólido, as quais são muito importantes para a geração de energia com baixas ou nenhuma emissões de poluentes, por meio de combustíveis renováveis. Logo, o presente trabalho visou sintetizar o SrCeO3 pelo método do precursor polimérico dopado e não dopado e caracterizá-los estruturalmente.
Referências
1. Taizhi, J.; Yajie, L.; Zhenhua, W.; Wang S.; Jinshuo Q.; Kening, S. An improved direct current sintering technique for proton conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δ: The effect of direct current on sintering process. Journal of Power Sources, v.248, p.70-76, 2014.
2. Medvedev, D. A; Murashkina, A; Pikalova, E.; Demin, A; Podias, A.; P. Tsiakaras, P. BaCeO3: Materials development, properties and application. Progress in Materials Science, v. 60, p. 72–129, 2014.
3. Lei, Z.; Rong, L.; Peter. I. C.; Shanwen, T. Fabrication of Solid Oxide Fuel Cell based on doped ceria electrolyte by one-step sintering at 800°C. Solid State Ionics, v. 203, p. 47-51, 2011.
4. Ben H. R.; Mingfei, L.; Meilin, L. A more effiient anode microstructure for SOFCs based on proton conductors. International Journal Hydrogen Energy, v. 37, p.1834-8348, 2012.
5. Nguyen, Q. M.; Review: Solid Oxide Fuel Cell technology-features and applications. Solid State Ionics, v.174, p.271-277, 2004.
6. Amado, R. S.; Malta, L. F. B.; Garrido, F. M. S.; Medeiros, M. E. Pilhas a combustível de óxido sólido: Materiais, Componentes e. Confiurações. Quim. Nova, v. 30, n. 1, p.189-197, 2007.
7. Fergus, J. W.; Electrolytes for Solid Oxide Fuel Cells. Journal of Power Sources. v. 162, p. 30-40, 2006.
8. Venkatasubramanian, A.; Gopalan, P.; Prasanna, T.R.S. Synthesis and characterization of electrolytes based on BaO-CeO2-GdO1.5 System for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, v. 35 p. 4597-4605, 2010.
9. Yanga, K.; Wanga, J. X.; Xuea, Y. J.; Wanga, M.S.; Hea, C. R.; Wang, Q.; Miao, H.; Wanga, W. G. Synthesis, Sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3-δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3-δ proton conductors. Ceramics International, v. 40, p. 15073-15081, 2014.
10. Menezes, R. R.; Souto, P. M..; Kiminami, R. H. G. A. Microwave sintering of ceramics. Part II: Sintering of ZnO-CuO varistors, ferriteand porcelain bodies. Cerâmica, v. 53, p.108-115, 2007.
11. Wang, W. B.; Liu, J.W.; Li, Y.D.; Wang, H.T.; Zhang, F.; Ma, G.L. Microstructures and proton conduction behaviors of Dy-doped BaCeO3 ceramics at intermediate temperature. Solid State Ionics, v. 181, p. 667-671, 2010.
12. Park, YK.; Lee, TH.; Kim, JT.; Lee, N.; Seo, Y.; Song, SJ.; Park JW. Highly conductive barium zirconate-based carbonate composite electrolytes for intermediate temperature-protonic ceramic fuel cells. Journal of Alloys and Compounds, v. 585, p. 103-110, 2014.
13. Gao, Z.; Kennouche, D.; Barnett, S. A. Reduced-temperature fiing of solid oxide fuel cells with zirconia/ceria bi-layer electrolytes. Journal of Power Sources, v.260, p. 259-263, 2014
14. Zakowsky, N.; Williamson, S.; Irvine, J. T. S. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3-δ electrolytes for Fuel Cells and other applications. Solid State Ionics, v. 176, p. 3019 – 3026, 2005.
15. Tong, J.; Clark, D.; Bernau, L.; Subramaniyan, A.; O’hayre, R. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. Solid State Ionics, v. 181, p. 1486-1498, 2010.
16. Nascimento, H.B.B.C.; Godinho, M.J., Kiminami, R. H.G.A. Investigation of the inflence of doping on the proton conductors of barium cerate. The Journal of Engineering and Exact Sciences, v. 3, p. 1271-1279, 2017.
17. Dahl, P. I.; Haugsrud, R.; Lein, H. L.; Grande, T.; Norby, T.; Einarsrud, MA. Synthesis, densifiation and electrical properties of strontium cerate ceramics. Journal of the European Ceramic Society, v. 27, p. 4461-4471, 2007.
18. Lai, Y.; Liang, X.; Yin, G.; Yang, S.; Wang, J.; Zhu, H.; Yu, H. Infrared spectra of iron phosphate glasses with gadolinium oxide. Journal of Molecular Structure, v. 1004, p.188-192, 2011.
19. Cizauskaite, S.; Johnsen, S.; Jɵrgensen, J.E.; Kareiva, A. Sol–gel preparation and characterization of non-substituted and Srsubstituted gadolinium cobaltates. Materials Chemistry and Physics, v. 125, p. 469-473, 2011.
20. Pavia, D.L.; Lampman, G. M.; KRIZ, G. S.; Yvyan, J. R. Introdução à Espectroscopia. São Paulo: Cengage Learning, 2012.