Estudo do Potencial de Adsorção de Metais Tóxicos pelo CaMoO
Resumo
O rápido desenvolvimento industrial e agrícola tem favorecido o aumento desenfreadono número de poluentes liberados no meio ambiente, principalmente, de metais tóxicosem água. Como consequência, faz-se necessário o desenvolvimento de novas tecnologiasde baixo custo, reprodutíveis e efiazes para a remoção desses contaminantes. Dentreessas tecnologias, a utilização de nanoadsorventes de óxidos metálicos vem recebendodestaque. Assim, o presente trabalho visa sintetizar o CaMoO4 utilizando radiação pormicro-ondas, caracterizar estruturalmente, morfologicamente e estudar o potencial deadsorção para íons Cd (II) e Mn (II). Observa-se que em pH 9, o material sintetizadoapresenta excelente potencial adsortivo para os íons cádmio (95%) e manganês (85%).
Referências
1. Pakulski, D.; W. Czepa; S. Witomska; A. Aliprandiet al. Graphene oxide-branched polyethylenimine foams for effiient removal of toxic cations from water. Journal of Materials Chemistry A, v. 6, n. 20, p. 9384-9390, 2018.
2. Khatoon, A..R.A.K. Rao. Effiient Cu (II) adsorption from aqueous medium using organic-inorganic nanocomposite material. Groundwater for Sustainable Development, v. 9, p. 100214, 2019. 3 3. Zhao, J.; Y. Niu; B. Ren; H. Chenet al. Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effectiveremoval of Pb (II) and Cd (II) from aqueous solution. Chemical Engineering Journal, v. 347, p. 574-584, 2018.
4. Nassar, N.N. Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. Journal of Hazardous Materials, v. 184, n. 1-3, p. 538-546, 2010.
5. Tofihy, M.A..T. Mohammadi. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials, v. 185, n. 1, p. 140-147, 2011.
6. Li, B.; F. Su; H.-K. Luo; L. Lianget al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials, v. 138, n. 1-3, p. 207-214, 2011.
7. Niu, Y.; R. Qu; C. Sun; C. Wanget al. Adsorption of Pb (II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. Journal of Hazardous Materials, v. 244, p. 276-286, 2013.
8. Sharma, Y.C.; V. Srivastava; V. Singh; S. Kaulet al. Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology, v. 30, n. 6, p. 583-609, 2009.
9. Huang, M.; Y. Zhang; W. Xiang; T. Zhouet al. Effiient adsorption of Mn (II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. Journal of Environmental Sciences, v. 85, p. 56-65, 2019.
10. Menezes-Filho, J.A.; M. Bouchard; P.d.N. Sarcinelli.J.C. Moreira. Manganese exposure and the neuropsychological effect on children and adolescents: a review. Revista panamericana de salud pública, v. 26, p. 541-548, 2009.
11. Deliyanni, E.A.; G.Z. Kyzas.K.A. Matis. Inorganic Nanoadsorbent: Akaganéite in Wastewater Treatment. In: (Ed.). Composite Nanoadsorbents: Elsevier, 2019. p.337-358.
12. Oladipo, A.A. Microwave-assisted synthesis of high-performance polymer-based nanoadsorbents for pollution control. In: (Ed.). New Polymer Nanocomposites for Environmental Remediation: Elsevier, 2018. p.337-359.
13. Tyagi, I.; V. Gupta; H. Sadegh; R.S. Ghoshekandiet al. Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science Technology and Development, v. 34, n. 3, p. 195- 214, 2017.
14. Dhillon, A..D. Kumar. New Generation Nano-Based Adsorbents for Water Purifiation. In: (Ed.). Nanoscale Materials in Water Purifiation: Elsevier, 2019. p.783-798.
15. Hua, M.; S. Zhang; B. Pan; W. Zhanget al. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, v. 211, p. 317-331, 2012.
16. Skoog, D.; D. West; F. Holler.S. Crouch. Fundamentos de QuímicaAnalítica. 2006.
17. Faust, S..O. Aly. Chemistry of water treatment, chapter 4: removal of organics by activated carbon. 1983.
18. Cao, C.-Y.; J. Qu; F. Wei; H. Liuet al. Superb adsorption capacity and mechanism of flwerlike magnesium oxide nanostructures for lead and cadmium ions. ACS applied Materials & interfaces, v. 4, n. 8, p. 4283-4287, 2012.
19. Sadegh, H.; G.A. Ali; V.K. Gupta; A.S.H. Makhloufet al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, v. 7, n. 1, p. 1-14, 2017.
20. Kunduru, K.R.; M. Nazarkovsky; S. Farah; R.P. Pawaret al. Nanotechnology for water purifiation: applications of nanotechnology methods in wastewater treatment. In: (Ed.). Water Purifiation: Elsevier, 2017. p.33-74.
21. Luo, T.; J. Cui; S. Hu; Y. Huanget al. Arsenic removal and recovery from copper smelting wastewater using TiO2. Environmental Science & Technology, v. 44, n. 23, p. 9094-9098, 2010.
22. Islam, M.A.; D.W. Morton; B.B. Johnson; B. Mainaliet al. Manganese oxides and their application to metal ion and contaminant removal from wastewater. Journal of Water Process Engineering, v. 26, p. 264-280, 2018.
23. Sujan, A.; H. Yang; P. Dimick.B.J. Tatarchuk. A fier optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications. Journal of Power Sources, v. 315, p. 242-253, 2016.
24. Singh, S.; K. Barick.D. Bahadur. Fe 3 O 4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A, v. 1, n. 10, p. 3325-3333, 2013.
25. Kim, J.; J.Y. Do; N.-K. Park; J.-P. Honget al. Adsorption/desorption behavior of carbonyl sulfie gas on Scheelite type MWO 4 adsorbent. Separation and Purifiation Technology, v. 207, p. 58-67, 2018.
26. Silvaa, M.F.; E.A.G. Pinedab.R. Bergamascoa. Aplicação de óxidos de ferro nanoestruturados como adsorventes e fotocatalisadores na remoção de poluentes de águas residuais. Quim. Nova, v. 38, n. 3, p. 393-398, 2015.
27. Silva, C.A.S.; R.L. Silva; A.T. Figueiredo.A.V. N. Magnetic Solid Phase Microextraction for Lead detection in aqueous samples using magnetite nanoparticles. Journal of the Brazilian Chemical Society, p. 1-7, 2019.
28. Sung Lim, C. Microwave-assisted synthesis and photoluminescence of MMoO4 (M=Ca, Ba) particles via a metathetic reaction. Journal of Luminescence, v. 132, n. 7, p. 1774-1780, 2012.29. Botelho, G.; I.C. Nogueira; E. Moraes.E. Longo. Study of structural and optical properties of CaMoO4 nanoparticles synthesized by the microwave-assisted solvothermal method. Materials Chemistry and Physics, v. 183, p. 110-120, 2016/11/01/2016.
29. Tranquilin, R.L. Estudo das propriedades microestruturais e ópticas do BaMoO4 processado em hidrotermal assistido por microondas. Dissertação de mestrado. Araraquara, 2009.
30. Kusuma, M..G. Chandrappa. Effect of calcination temperature on characteristic properties of CaMoO4 nanoparticles. Journal of Science: Advanced Materials and Devices, v. 4, n. 1, p. 150-157, 2019.
31. Ponta, O.; R. Ciceo-Lucacel; A. Vulpoi; T. Raduet al. Synthesis and characterisation of nanostructured silica-powellite-HAP composites. Journal of Materials Science, v. 50, n. 2, p. 577-586, 2015.
32. Li, X.; G. Fan.Z. Huang. Synthesis and surface thermodynamic functions of CaMoO4 nanocakes. Entropy, v. 17, n. 5, p. 2741-2748, 2015.
33. Bhanvase, B.; V. Kadam; T. Rode.P. Jadhao. Sonochemical process for the preparation of novel calcium zinc molybdate nanoparticles. International Journal of Nanoscience, v. 14, n. 04, p. 1550014, 2015.
34. Zalga, A.; Z. Moravec; J. Pinkas.A. Kareiva. On the sol–gel preparation of different tungstates and molybdates. Journal of Thermal Analysis and Calorimetry, v. 105, n. 1, p. 3-11, 2011.
35. LI, Z.; X. ZHAO; Y. JIANG.Y. ZHAO. Synthesis and Properties of Spherical Calcium Molybdate Powderfor White Lightemitting Diodes. Journal of The Chinese Ceramic Society, v. 42, n. 10, p. 1279-1286, 2014.
36. Ghaed-Amini, M.; M. Bazarganipour.M. Salavati-Niasari. Calcium molybdate octahedral nanostructures, hierarchical self-assemblies controllable synthesis by coprecipitation method: characterization and optical properties. Journal of Industrial and Engineering Chemistry, v. 21, p. 1089-1097, 2015.
37. Gao, D.; Y. Li; X. Lai; Y. Weiet al. Fabrication and luminescence properties of Dy3+ doped CaMoO4 powders. Materials Chemistry and Physics, v. 126, n. 1-2, p. 391-397, 2011.
38. Yin, Y.; Y. Gao; Y. Sun; B. Zhouet al. Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature. Materials Letters, v. 64, n. 5, p. 602-604, 2010.
39. Xu, C.; D. Zou; H. Guo; F. Jieet al. Luminescence properties of hierarchical CaMoO4 microspheres derived by ionic liquid-assisted process. Journal of Luminescence, v. 129, n. 5, p. 474-477, 2009.
40. Phuruangrat, A.; T. Thongtem.S. Thongtem. Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate. Journal of Alloys and Compounds, v. 481, n. 1-2, p. 568-572, 2009.
41. Sun, Y.; C. Li; Z. Zhang; X. Maet al. Persimmon-like CaMoO4 micro/nanomaterials: A rapid microwave-assisted fabrication, characterization, and the growth mechanism. Solid State Sciences, v. 14, n. 2, p. 219-224, 2012.
42. Marques, V.; L. Cavalcante; J. Sczancoski; A. Alcântaraet al. Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Crystal Growth & Design, v. 10, n. 11, p. 4752-4768, 2010.
43. Karunakaran, C.; V. Rajeswari.P. Gomathisankar. Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sciences, v. 13, n. 5, p. 923-928, 2011.
44. Bi, J.; L. Wu; Z. Li; Z. Dinget al. A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. Journal of Alloys and Compounds, v. 480, n. 2, p. 684-688, 2009.
45. Ryu, J.H.; J.-W. Yoon; C.S. Lim; W.-C. Ohet al. Microwaveassisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property. Journal of Alloys and Compounds, v. 390, n. 1-2, p. 245-249, 2005.
46. Hu, J.; G. Chen.I.M. Lo. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. Journal of Environmental Engineering, v. 132, n. 7, p. 709-715, 2006.
47. Heidelmann, G.P.; T.M. Roldão; S.G. Egler; M. Nascimentoet al. Uso de biomassa de microalga para biossorção de lantanídeos. HOLOS, v. 6, p. 170-179, 2017.
48. Robles, J..J. Regalbuto. The Engineering of Pt/Carbon Catalyst Preparation: For application on Proton Exchange Fuel Cell Membrane (PEFCM). Progress Report REU, 2004.
49. de Freitas, F.B.A.; M.Y. de Freitas Câmara.M.D.F. Freire. Determinação do PCZ de adsorventes naturais utilizados na remoção de contaminantes em soluções aquosas. Blucher Chemistry Proceedings, v. 3, n. 1, p. 610-618, 2015.