Materiais Cristalinos Funcionais e Desenvolvimento Tecnológico

  • Agnaldo M. J. Junior Centro Universitário De Anápolis - UniEVANGÉLICA / Universidade Estadual de Goiás (UEG), Anápolis
  • Igor L. de Andrade Universidade Estadual de Goiás (UEG), Anápolis
  • Wesley F. Vaz Universidade Estadual de Goiás (UEG), Anápolis / Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso
  • Hamilton B. Napolitano Centro Universitário De Anápolis - UniEVANGÉLICA / Universidade Estadual de Goiás (UEG), Anápolis
  • Eduardo C. M. Faria Universidade Estadual de Goiás (UEG), Anápolis
Palavras-chave: Cristalografia. Novos materiais. Biodiversidade Molecular.

Resumo

O estudo de novos materiais e o conhecimento estrutural da matéria é de grande importância para a ciência, neste trabalho é feita uma relação entre o estudo molecular, via difração de Raios X, através do método cristalográfico e o desenvolvimento tecnológico. É apresentado uma descrição dessa metodologia, amplamente aplicada para determinação estrutural de materiais sólido cristalinos. Assim, são demonstrados alguns exemplos de novos materiais resultantes do estudo da biodiversidade molecular.

Referências

1. Drenth J. Principles of Protein X-Ray Crystallography. Springer New York; 2007.

2. Fernandes WB, Napolitano HB, Nodaperes C, Martins FT, Lariucci C. Aplicações Tecnológicas da Metodologia Cristalográfica. Rev Process Químicos. 2010.

3. Betts K. Crystallography: Understanding the Nature of Chemical Bonds and Molecular Structure.; 2015.

4. Olliveira Sallum L, Lúcio Benedito de Aquino G, Napolitano HB. Cristalografia de chalconas metoxiladas. In: Ciências Moleculares 2. Anápolis: Universidade Estadual de Goiás, Pró-Reitoria de Pesquisa e Pós-Graduação; 2012:458.

5. Guionneau P. Crystallography and spin-crossover. A view of breathing materials. Dalt Trans. 2014;43:382-393.

6. Lucarini V, Fraedrich K, Lunkeit F. Thermodynamics of climate change: generalized sensitivities. Atmos Chem Phys. 2010;10(20):9729-9737. doi:10.5194/acp-10-9729-2010

7. Zarghami E. New Technologies in Construction Materials Based on Environmental Approach (Case Study: Double Skin Facades). Mediterr J Soc Sci. 2015;6(6):17-24.

8. Li J, Junliang S. Application of X-ray Diffraction and Electron Crystallography for Solving Complex Structure Problems. Acc Chem Res. 2017;50:2737-2745.

9. Callister Jr. WD, Rethwish DG. A Estrutura dos Sólidos Cristalinos. In: Ciência e Engenharia de Materiais. 7a Edição. Rio de Janeiro; 2007.

10. Giacovazzo C. Fundamentals of Crystallography. Oxford University Press; 2002.

11. Viterbo D. Solution and refinement of crystal structures. In: Giacovazzo C, ed. Fundamentals of Crystallografhy. Oxford University Press; 2002.

12. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C. 2015;71(1):3-8. doi:10.1107/S2053229614024218

13. Burla MC, Caliandro R, Carrozzini B, et al. Crystal structure determination and refinement via SIR2014. J Appl Crystallogr. 2015;48(1):306-309. doi:10.1107/S1600576715001132

14. Sheldrick GM, C. K, Goggard. The DIRDIF program system. In: Crystallographic Computing. Vol. 3. ; 1985:216.

15. Cambridge Structural Database. Cambridge Crystallographic Data Centre. 2010.

16. Martins M, Meyer A, Salbego P, et al. Synthesis, Crystal Structure, and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5-yl) benzenes. Molecules. 2017;23(1):22. doi:10.3390/molecules23010022

17. Turro NJ. Molecular structure as a blueprint for supramolecular structure chemistry in confined spaces. Proc Natl Acad Sci. 2005;102(31):10766-10770. doi:10.1073/pnas.0501376102

18. Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta. 1977;44(2):129-138.

19. McKinnon JJ, Spackman MA, Mitchell AS. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci. 2004;60(6):627-668.

20. Spackman MA, Jayatilaka D. Hirshfeld surface analysis. CrystEngComm. 2009;11(1):19-32.

21. Desiraju GR, Steiner T. The Weak Hydrogen Bond: In Structural Chemistry and Biology. Vol 9. International Union of Crystal; 2001.

22. Carvalho PS, Custodio JMF, Vaz WF, et al. Conformation analysis of a novel fluorinated chalcone. J Mol Model. 2017;23(3):97. doi:10.1007/s00894-017-3245-8

23. Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002;4(66):378-392.

24. Yuriev E, Coote ML. Molecular Modelling: Advances in Biomolecular and Materials Modelling. Aust J Chem. 2011;64(7):885. doi:10.1071/CH11232

25. Singh SB, Pelaez F. Biodiversity, chemical diversity and drug discovery. Prog Drug Res. 2008;65:142-174. doi:10.1007/978-3-7643-8117-2_4

26. Custodio JMF, Santos FG, Vaz WF, et al. Molecular structure of hybrid imino-chalcone in the solid state: X-ray diffraction, spectroscopy study and third-order nonlinear optical properties. J Mol Struct. 2018;1157:210-221. doi:10.1016/j.molstruc.2017.12.023

27. Custodio J, Michelini L, Castro M, et al. Structural Insights on a Novel Anticancer Sulfonamide Chalcone. New J Chem. 2018. doi:10.1039/C7NJ03523C

28. Custodio JMF, Vaz WF, de Andrade FM, Camargo AJ, Oliveira GR, Napolitano HB. Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies. J Mol Struct. 2017;1136:69-79. doi:10.1016/j.molstruc.2017.01.076

29. Custodio J, Faria E, Sallum L, et al. The Influence of Methoxy and Ethoxy Groups on Supramolecular Arrangement of Two Methoxy-chalcones. J Braz Chem Soc. 2017;28(11):2180-2191. doi:10.21577/0103-5053.20170067

30. Custodio J, Moreira C, Valverde C, de Aquino G, Baseia B, Napolitano H. Hirshfeld Surfaces and Nonlinear Optics on Two Conformers of a Heterocyclic Chalcone. J Braz Chem Soc. 2017;29(2):168-179. doi:10.21577/0103-5053.20170136

31. Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. Phytochem Rev. 2014;15(1):87-120. doi:10.1007/s11101-014-9387-8

32. Yang W, Cheng Z, Xu Y, et al. A highly selective fluorescent chemosensor for cyanide anions based on a chalcone derivative in the presence of iron(III) ions, and its capacity for living cell imaging in mixed aqueous systems. New J Chem. 2015;39(9):7488-7494. doi:10.1039/C5NJ01043H

33. Velmurugan K, Prabhu J, Tang L, et al. A simple chalcone-based fluorescent chemosensor for the detection and removal of Fe3+ ions using a membrane separation method. Anal Methods. 2014;6(9):2883. doi:10.1039/c3ay42139b

34. Mahajan PG, Bhopate DP, Kolekar GB, Shivajirao R. Patil. A Chalcone Based Novel Fluorescent Nanoprobe for Selective Detection of Al3+ Ion in Aqueous Medium. J Lumin Appl. 2015;2(1):1-13. doi:10.7726/jla.2015.1001

35. Begum NA, Roy N, Laskar RA, Roy K. Mosquito larvicidal studies of some chalcone analogues and their derived products: Structure-activity relationship analysis. Med Chem Res. 2011;20(2):184-191. doi:10.1007/s00044-010-9305-6

36. Hoerger CC, Schenzel J, Strobel BW, Bucheli TD. Analysis of selected phytotoxins and mycotoxins in environmental samples. Anal Bioanal Chem. 2009;395(5):1261-1289. doi:10.1007/s00216-009-3088-y

37. Caboni P, Aissani N, Demurtas M, Ntalli N, Onnis V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations. Pest Manag Sci. 2016;72(1):125-130. doi:10.1002/ps.3978

38. Powers C, Setzer W. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever. Comb Chem High Throughput Screen. 2016;19(7):516-536. doi:10.2174/1386207319666160506123715

39. Díaz-Tielas C, Graña E, Reigosa MJ, Sánchez-Morreiras AM. BIOLOGICAL ACTIVITIES AND NOVEL APPLICATIONS OF CHALCONES. Planta Daninha. 2016;34(3):607-616. doi:10.1590/s0100-83582016340300022

40. Kumar R, Sharma P, Shard A, Tewary DK, Nadda G, Sinha AK. Chalcones as promising pesticidal agents against diamondback moth (Plutella xylostella): Microwave-assisted synthesis and structure-activity relationship. Med Chem Res. 2012;21(6):922-931. doi:10.1007/s00044-011-9602-8

41. Powles SB, Yu Q. Evolution in Action: Plants Resistant to Herbicides. Annu Rev Plant Biol. 2010;61(1):317-347. doi:10.1146/annurevarplant-042809-112119

42. Plimmer JR, Gammon DW, Ragsdale and NR. Encyclopedia of Agrochemicals. John Wiley Sons, Inc. 2003;17(1981):528-529-751-785-843-1166-1199. doi:10.1002/047126363X

43. Schleifer KJ. Challenges in agrochemicals design. J Cheminform. 2013;5(1):O17. doi:10.1186/1758-2946-5-S1-O17

44. Delaney J, Clarke E, Hughes D, Rice M. Modern agrochemical research: a missed opportunity for drug discovery? Drug Discov Today. 2006;11(17-18):839-845. doi:10.1016/j.drudis.2006.07.002

45. David Tilman, Kenneth G. Cassman, Pamela A. Matson RN& SP. Nature. Nature. 2002;418:671-677.

46. Tilman D, Fargione J, Wolff B, et al. Forecasting agriculturally driven global environmental change. Science (80- ). 2001;292(5515):281-284. doi:10.1126/science.1057544

47. Jeschke P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manag Sci. 2010;66(1):10-27. doi:10.1002/ps.1829

48. Jeanmart S, Edmunds AJF, Lamberth C, Pouliot M. Synthetic approaches to the 2010-2014 new agrochemicals. Bioorganic Med Chem. 2016;24(3):317-341. doi:10.1016/j.bmc.2015.12.014

49. Castro MJL, Ojeda C, Cirelli AF. Advances in surfactants for agrochemicals. Environ Chem Lett. 2014;12(1):85-95. doi:10.1007/s10311-013-0432-4

50. AOUADA, F. A.; DE MOURA MR. Nanotechnology applied in agriculture: Controlled release of agrochemicals. In: Rai M, Ribeiro C, Mattoso L, Duran N, eds. Nanotechnologies in Food and Agriculture. Cham: Springer International Publishing; 2015:103-118. doi:10.1007/978-3-319-14024-7

51. Desiraju GR. Crystal Engineering: A Holistic View. Angew Chemie Int Ed. 2007;46(44):8342-8356. doi:10.1002/anie.200700534

52. Dubey S, Jhelum V, Patanjali PK. Controlled release agrochemicals formulations: A review. J Sci Ind Res (India). 2011;70(2):105-112.

53. Jeschke P. Propesticides and their use as agrochemicals. Pest Manag Sci. 2016;72(2):210-225. doi:10.1002/ps.4170

54. Wouters J, Rome S, Quéré L. Monographs of most Frequent Co-Crystal Formers. In: Pharmaceutical Salts and Co-Crystals. RSC; 2011:338-382.
doi:10.1039/9781849733502-00338

55. Wicker JGP, Crowley LM, Robshaw O, et al. Will they co-crystallize? CrystEngComm. 2017;(19):5336-5340. doi:10.1039/C7CE00587C

56. Zhou L, Dodd S, Capacci-Daniel C, Garad S, Panicucci R, Sethuraman V. Co-crystal formation based on structural matching. Eur J Pharm Sci. 2016;88:191-201. doi:10.1016/j.ejps.2016.02.017

57. Kelley SP, Narita A, Holbrey JD, Green KD, Reichert WM, Rogers RD. Understanding the effects of ionicity in salts, solvates, co-crystals, ionic co-crystals, and ionic liquids, rather than nomenclature, is critical to understanding their behavior. Cryst Growth Des. 2013;13(3):965-975.
doi:10.1021/cg4000439

58. Chen C, Liu F, Fan T, Peng Q. Improved solubility of sparingly soluble pesticides in mixed ionic liquids. RSC Adv. 2016;6(63):58106-58112. doi:10.1039/C6RA05012C

59. Braga D, Grepioni F, Chelazzi L, et al. Bentazon: Effect of Additives on the Crystallization of Pure and Mixed Polymorphic Forms of a Commercial Herbicide. Cryst Growth Des. 2014;14(11):5729-5736. doi:10.1021/cg500980j

60. Moss LE, Karcher BA, Richardson Jnr JW, Jacobson RA. Structure of 3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon). Acta Crystallogr Sect C Cryst Struct Commun. 1986;42(12):1785-1787. doi:10.1107/S010827018609056X

61. Bessegato GG, Santos VP, Lindino CA. Degradação fotoeletroquímica do herbicida bentazona sobre eletrodos de carbono modificados por TiO 2. Quim Nova. 2012;35(2):332-336. doi:10.1590/S0100-40422012000200019

62. Syngenta. Embrapa identifica resistência da lagarta-do-cartucho ao metomil.

63. Waite MG, Sim GA. Configuration of the S-alkyl thiohydroximates: crystal and molecular structures of syn-(alkylthio)-isomers of S-methyl and S-cyanoethyl O-(N-methylcarbamoyl)acetothiohydroximates. J Chem Soc B Phys Org. 1971:752. doi:10.1039/j29710000752

64. Takusagawa F, Jacobson RA. Crystal and Molecular Structure of Carbamate Insecticides. 3. Methomyl. J Agric Food Chem. 1977;25(3):577-581. doi:10.1021/jf60211a002

65. Aranda G, Gauvrit C, Cesario M, Guilhem J, Pascard C, Tran Huu Dau ME. Biological activity of the two geometrical isomers of methomyl on maize mitochondria. Phytochemistry. 1983;22(11):2431-2435. doi:10.1016/0031-9422(83)80134-4

66. Aliev AG, Atovmyan L 0., Kartsev VG. Structure of 4-amino-6-tert-Butyl-3-methylthio- 1,2,4-triazin-5-one. J Struct Chem. 1989;30(6):1012-1013. doi:10.1007/BF00752809

67. Rossi CVS, Velini ED, Luchini LC, et al. Performance of metribuzin apllied on sugarcane straw | Dinâmica do herbicida metribuzin aplicado sobre palha de cana-de-açúcar (saccarum officinarum). Planta Daninha. 2013;31(1). doi:10.1590/S0100-83582013000100024

68. Lazaro SR de, Bortolini TJ, Oliveira CR de. Simulação computacional do herbicida Metribuzin. In: VI Workshop Da Rede de Nanotecnologia Aplicada Ao Agronegócio. Fortaleza: Embrapa Agroindústria Tropical; 2012:402-403.

69. Chopra D, Mohan TP, Rao KS, Row TNG. Exploring polymorphism by solvent mediation in potentially active herbicide Metribuzin: A subtle interplay of weak intermolecular interactions. CrystEngComm. 2005;7(62):374. doi:10.1039/b504347f

70. Franco MHR, França AC, Albuquerque MT, Schiavon NC, Vargas GN. Fitorremediação de solos contaminados com picloram por Urochloa brizantha. Pesq Agropec Trop. 2014;44(4):460-467.

71. Parthasarathi V, Wolfrum S, Noordik JH, et al. No Title. Cryst Struct Commun. 1982;(11):1519-1524.

72. Smith G. Crystal structure of poly[[di-μ 2 -aqua-aquasodium] 4-amino3,5,6-trichloropyridine-2-carboxylate trihydrate], the sodium salt of the herbicide picloram. Acta Crystallogr Sect E Crystallogr Commun. 2015;71(8):931-933. doi:10.1107/S2056989015012633

73. Gielen D, Boshell F, Saygin D. Climate and energy challenges for materials science. Nat Mater. 2016;15:117-120.

74. Ambrose A, Al-Amin A, Rasiah R, Saidur R, Amin N. Prospects for introducing hydrogen fuel cell vehicles in Malaysia. Int J Hydrogen Energy. 2017;42(14):9125-9134.

75. Erk P, Hengelsberg H, Haddow MF, van Gelder R. The innovative momentum of crystal engineering. CrystEngComm. 2004;6(78):474. doi:10.1039/b409282a

76. Torriani IL. Cristalografia: uma ciência multidisciplinar. Ciênciancia e Cult. 2014;66:4-5. http://cienciaecultura.bvs.br/scielo.php?script=sci_arttext&pid=S0009-67252014000300002&nrm=iso.
Publicado
2017-07-03
Como Citar
J. Junior, A. M., Andrade, I. L. de, Vaz, W. F., Napolitano, H. B., & Faria, E. C. M. (2017). Materiais Cristalinos Funcionais e Desenvolvimento Tecnológico. Revista Processos Químicos, 11(22), 41-51. https://doi.org/10.19142/rpq.v11i22.405