Applications of Kramers Escape Rate Theory With Power-Law Distributions
Resumo
Kramers escape rate theory is the most important one of modern reaction rate theories. However, one key assumption of the theory that thermodynamic equilibrium must prevail throughout the entire system studied is farfetched for open complex systems. Thereby, Kramers escape rates are generalized to describe rates of reactions in nonequilibrium systems with power-law distributions. Kramers escape rates in the very low damping systems, in overdamped systems and in the low-to-intermediate damping (LID) systems are investigated and the corresponding escape rates are obtained respectively on the basis of nonextensive statistics. When apply to biological, physical and chemical systems in each damping systems, these generalized escape rates with power-law distribution show a better agreement with experimental rates as compared with the traditional Kramers escape rates. It is expected that the generalized result can lead to an insight into the research on reaction rate theory for nonequilibrium complex systems with power-law distributions.
Referências
2. Chatterjee, D., Cherayil, B. J., J. Chem. Phys. 2010, 132, 025103.
3. Coffey, W. T., Kalmykov, Y. P., Waldron, J. T., The Langevin Equation: With Applications to Stochastic Problems in Physics Chemistry and Electrical Engineering, Singapore: World Scientific, 2004.
4. Frauenfelder, H., Sligar, S. G. Wolynes, P. G., Science, 1991, 254, 1598.
5. DeVoe, R. G., Phys. Rev. Lett., 2009,102, 063001.
6. Aquilanti, V., Mundim, K. C., Elango, M., Kleijn, S., Kasai, T., Chem. Phys. Lett., 2010, 498, 209.
7. Niven, R. K., Chem.Eng.Sci., 2006, 61, 3785.
8. Gallos, L. K., Argyrakis, P., Phys. Rev. E., 2005, 72, 017101.
9. Claycomb, J. R., Nawarathna, D., Vajrala, V., Miller, J. H. Jr, J. Chem. Phys. 2004, 121, 12428.
10. Scudder, J. D., Astrophys. J., 1994, 427, 446.
11. Treumann, R. A., Jaroschek, C. H. Scholer, M., Phys. Plasmas, 2004, 11, 1317.
12. Collier, M. R., Roberts, A., Vinas, A., Adv. Space Res. 2008, 41, 1704.
13. Tsallis, C., Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, New York: Springer, 2009.
14. Treumann, R. A. Jaroschek, C. H., Phys.Rev.Lett., 2008, 100, 155005.
15. Zwanzig, R., Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.
16. Hanggi, P., Talkner, P.,Borkovec, M., Rev. Mod. Phys. 1990, 62, 251.
17. Du, J. L., J. Stat. Mech., 2012, P02006.
18. Mazo, J. J., Naranjo, F, Zueco, D., Phys. Rev. B., 2010, 82, 094505.
19. Barone, A., Cristiano, R., Silvestrini, P., J. Appl. Phys., 1985, 58, 3822.
20. Ambegaokar, V., Halperin, B. I., Phys. Rev. Lett., 1969, 22, 1326.
21. Zhou, Y. J., Du, J. L., J. Stat.Mech., 2013, P11005.
22. Zhou, Y. J., Du, J. L., Physica A, 2014, 403, 244.
23. Du, J. L., Physica A, 2012, 391,1718.
24. Hara, K., Ito, N., Kajimoto, O., J. Chem. Phys., 1999, 110, 1662.
25. Stolka, M., Yanus, J. F., Pearson, J. M., Macromolecules, 1976, 9, 710.
26. Zhou, Y. J., Du, J. L., Physica A, 2014, 402, 299.
27. Luccioli, S., Imparato, A., Mitternacht, S., Irbäck, A., Torcini, A., Phys. Rev. E., 2010, 81, 010902(R).
28. Dudko, O. K., Hummer, G., Szabo, A., Phys. Rev. Lett., 2006, 96, 108101.
29. Hummer, G., Szabo, A., Biophys. J., 2003, 85, 5.
Copyright (c) 2005 Revista Processos Químicos
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.