Quantification of Calcium Titanate (CaTiO3 ) by the Rietvield Method in Different Molar Proportions

  • Guilherme Gralik Serviço Nacional de Aprendizagem Industrial/SENAI-PR.
Palavras-chave: titanato de cálcio, método rietvield

Resumo

O objetivo do presente estudo é produzir titanato de cálcio (CT) com estrutura perovskita (ABO3 ) a partir de rutilo comercial (TiO2 ) e carbonato de cálcio comercial (CaCO3 ). As matérias-primas foram caracterizadas por difração de raios X (DRX). Diferentes composições foram formuladas, as amostras foram comprimidas a 150 MPa e sinterizadas em forno resistivo a temperaturas de 1300 °C por 3h. As amostras foram analisadas por DRX após o processo de sinterização e as fases foram quantificadas de acordo com o método de Rietveld. As imagens foram representadas por meio de microscopia eletrônica de varredura (MEV), a fim de mostrar as características das microestruturas formadas. A densidade dos pellets sinterizados foi medida usando o método de Arquimedes. De acordo com os resultados, a formação do CT depende da razão molar entre os cátions cálcio e titânio nas composições analisadas.

Referências

A. J. Moulsonn, J. M. Herbert, Electroceramics: Materials, Properties and Applications, Wiley, New York, 2003.

J. W. Kim, D. C. Yoon, M. S. Jeon, J. W. Kang, J. W. Kim, H. S. Lee, “Degradation behaviors and failure analysis of Ni–BaTiO3 base-metal electrode multilayer ceramic capacitors under highly accelerated life test.” Current Applied Physics.10 (2010) 1297.

A. J. Bell, “Ferroelectrics: The role of ceramic science and engineering”, Journal of the European Ceramic Society, 28, n. 7, pp. 1307-1317, Jan. 2008.

V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, M. Weihnacht, R. Kunze, “Perovskite CaTiO3 as an incipient ferroelectric”, Solid State Communications, 110, n. 11, pp. 611-614, Abr. 1999.

B. J. Kennedy, C. J. Howard, B. C. Chakoumakos, “High-temperature phase transistions in SrZrO3”, Physical Review. B 59 (6), 1999, pp. 4023-4027.

B. J. Kennedy, C. J. Howard, B. C. Chakouma, “Phase transitions in perovskite at elevated temperatures – a powder neutron diffraction study”, Journal of Physics Condensed Matter. 11, n. 6, pp. 1479-1488, Out. 1999.

R. Ali, M. Yashima, “Space group and crystal structure of perovskite CaTiO3 from 296 to 1720 K.”, Journal Solid State Chemistry. 178 pp. 2867-2872 (2005).

J. Hao, W. Si, X. X. Xi, R. A. S. Guo, L. E. Bhalla, “Dieletric properties of pulsed-laser deposited calcium titanate thin films”. Applied Physics Letter, 76, n. 21, pp.3100-3102, May 2000.

T. J. Webster, et al. “Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3”. Journal of Biomedical Materials Research Part A, 67, n. 3, p. 975-980, 2003.

G. M. Mi, Y. Murakami, D. Shindo, F. Saito, “Microstructural investigation of CaTiO3 formed mechanochemically by grinding of a CaO-TiO2 mixture”. Powder Technology, n. 104, 1, 1999. p.75.

H. Mizogughi, et al. “Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation”. Materials Research Bulletin, 37, n. 15, p. 2401-2406, 2002.

A. T. Figueiredo, V. M. Longo, S. Lazaro, and et al. “Blue-green and red photoluminescence in CaTiO3:Sm”. Journal of Luminescence, 126, n. 2, p. 403-407, 2007.

A. T. Figueiredo, and et al. “Correlation among order-disorder, electronic levels, and photoluminescence in amorphous CT:Sm”.Chemistry of Materials, 18, n. 12, p. 2904-2911, 2006.

D. Suvorov, et al. “Microstructural characterization of CaTiO3-NdA1O3 based ceramics”. Korean Journal Crystallography, 11, n. 4, p. 195-199, 2000.

J. S. Kim, et al. “Crystal structure and microwave dielectric properties of CaTiO3- (Li1/2)TiO3-(Ln1/3Nd1/3) TiO3 (Ln = La, Dy) ceramics”. Japanese Journal of Applied Physics, 38, p. 5633-5673, 1999.

D. Suvorov, et al. “CaTiO3 – based ceramics: microstructural development and dielectric properties”. Acta Chimica Slovenica, 48, p. 87-99, 2001.

G. PFAFF, “Synthesis of calcium titanate powders by the sol-gel process”. Chemistry of Materials, 1994, 6: 58-62.

L. S. CAVALCANTE, V. S. MARQUES, J. C. Sczancoski, et al. “Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces”. Chemical Engineering Journal 2008, 143: 299-307.

L. S. Cavalcante, A. Z. Simões, L. P. S Santos, et al. “Dieletric properties of Ca (Zr0.05 Ti0.95) O3 thin films prepared by chemical solution deposition”. Journal of Solid State Chemistry, 2006, 179: 3739-3743.

Z. Z. Yang, T. Fujii, K. Suwa, H. Iwahara, Solid State Ionics 40/41 (1990) 544.

U. Balachandran, B. Odekirk, N.G. Eror, “Defect structure of acceptor-doped calcium titanate at elevated temperatures.” Journal of Materials Science 17, pp. 1656–1662 (1982).

K. Neufuss, A. Rudajevová, “Thermal properties of the plasma sprayed MgTiO3 – CaTiO3 and CaTiO3”. Ceramic International 28 (1): pp.93–97. December 2002.

G. Mi, F. Saito, S. Suzuki, Y. Waseda. “Formation of CaTiO3 by grinding from mixtures of CaO or Ca(OH)2 with anatase or rutile at room temperature”, Powder Technology. 97, 15 June 1998, Pages 178-182.

I. R. Evans, J. A. K. Howard, T. Sreckovic, M. M. Ristic, “Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate, CaTiO3.”, Materials Research Bulletin, 38 (2003) 1203–1213.

G. Mi, Y. Murakami, D. Shindo, F. Saito, “Microstructural investigation of CaTiO3 formed mechanochemically by dry grinding of a CaO – TiO2 mixture”. Powder Technology. 104 (1999) 75.

A. C. Larson, Dreele R. B. B., GSAS, https://permalink.lanl.gov/object/tr?what=info:lanlrepo/lareport/LA-UR-86-0748_REV, acessado em outubro de 2019.Los Alamos National Laboratory ReportLAUR (2000) 86.

B. H. TOBY, “EXPGUI, a graphical user interface for GSAS” Journal Applied Crystallography, 2001. 34, 210-213.

M. D. Graff, M. E. Mchenry, Structure of Materials, Cambridge University Press, 2007.

Jacob, K. T., and Gupta, S., 2009. “Phase diagram of the system Ca Ti-O at 1200 K”. Bulletin of Materials Science, 32 (6), pp. 611-616.

H. E. Tulgar, “Solid state relationships in the system calcium oxide-titanium dioxide”, Istanbul Technical. University Bulletin, 29 (1), pp. 111-129, 1976.

R. L. Shultz, 1973. “Effects of titanium oxide on equilibria among refractory phases in the system CaO-MgO-iron oxide”, Journal American Ceramic Society, 56 (1), pp. 33-36.

A. Jongejan, A. L. Wilkins, 1970. “A re-examination of the system CaO-TiO2 at liquidus temperatures”, Journal of the Less-Common Metals, 20 (4), pp. 273-279.

R. S. Roth, 1958. “Revision of the phase equilibrium diagram of the binary system calcia titania, showing the compound Ca4Ti3O10”. Journal of Research of the National Bureau of Standard, RP 2913, 61(5), pp. 437-440.

R. C. DeVries, R. Roy, E. F. Osborn, 1954. “The system TiO2-SiO2”. Transactions and journal of the British Ceramic Society, 53(9), pp. 525-540.

Publicado
2021-04-23
Como Citar
Gralik, G. (2021). Quantification of Calcium Titanate (CaTiO3 ) by the Rietvield Method in Different Molar Proportions. Revista Processos Químicos, 14(28), 9-14. https://doi.org/10.19142/rpq.v14i28.594