Controle da Adiabaticidade Quântica da Simulação por Dinâmica Molecular de Car-Parrinello da Molécula do Dimetilcarbonato
Abstract
Car-Parrinello Molecular Dynamics is a tool that has been applied with great frequency since it performs simulations of dynamic molecular systems at Ab initio level. In this work, a study of the structure of the dimethylcarbonate molecule was carried out to verify the control of the adiabaticity of the system resulting from the simulation through the Car-Parrinello molecular dynamics. Initially, the structural properties of the DMC molecule were verified through Ab initio calculations by the Gaussian 2003 program package, using the 6-31G* base set and the B3LYP correlation and exchange functional. The simulations were performed by the QuantumEXEPRESSO software package, where the dummy mass was varied by keeping the size of the fixed step and then keeping the dummy mass fixed and varying the size of the time step
References
1. Car, R. e Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, vol. 55, pág. 2471, 1985.
2. Alder, B. J. e Wainwrigth, T. E. Phase transition for a hard sphere system. Journal Chemical Physics, vol. 27, pág. 1208, 1957.
3. Hohenberg, P; Kohn, W. Inhomogeneous electron gas. Physical Review, vol. 136, pág. B864, 1964.
4. Kohn, W. e Sham, L. J. Self-consistent equations including exchange and correlation Effects. Physical Review, Vol. 140, pág. A1133, 1965.
5. Marx, D. e Hutter, J. Ab Initio Molecular Dynamics – Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009.
6. Kirkpatrick, S.; Gelett, C. D. e Vecchi, M. P. Optimization by simulated annealing. Science, vol. 220, pág. 671, 1983.
7. Tangney, P. On the theory underlying the Car-Parrinello method and the role of the fictitious mass parameter. The Journal Chemical Physics, vol. 124, pág. 044111, 2006.
8. Fois, E. S.; Penman, J. I.; Madden, P. A. Control of the adiabatic electronic state in ab initio molecular dynamics. Journal Chemical Physics, vol. 98, pág. 6361, 1993.
9. Tuckerman, M. E. e Parrinello, M. Integrating the Car-Parrinello equations. I. Basic integration techniques. Journal Chemical Physics, vol. 101, pág. 1302, 1994.
10. Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, vol. 159, pág. 98, 1967.
11. Ryckaert, J., Ciccotti, G. e Berendsen, J. C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal Computational Physics, vol. 23, pág. 327, 1977.
12. Tuckerman, M. E. e Parrinello, M. Integrating the Car-Parrinello equations. II. Multiple time scale techniques. Journal Chemical Physics, vol. 101, pág. 1316, 1994.
13. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, vol. 52, pág. 255, 1984.
14. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Physics Review A, vol. 31, pág. 1695, 1985.
15. Payne, M. C. et. al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Review of Modern Physics, vol. 64, pág. 1045, 1992.
16. Pastore, G.; Smargiassi, E.; Buda, F. Theory of ab initio moleculardynamics calculations. Physical Review A, vol. 44, pág. 6334, 1991.
17. Blöchl, P. E.; Parrinello, M. Adiabaticity in first-principle molecular dynamics. Physical Review B, vol. 45, pág. 9413, 1992.
18. Payne, M. C. et. al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Review of Modern Physics, vol. 64, pág. 1045, 1992.
19. Phillps, J. C. Energy-band interpolation scheme based on a pseudopotential. Physical Review, vol. 112, pág. 685, 1958.
20. Yin, M. T. e Cohen, M. L. Theory of ab initio pseudopotential calculations. Physical Review B, vol. 25, pág. 7403, 1982.
21. Starkloff, T. e Joannopoulos, J. D. Local pseudopotential theory for transition metal. Physical Review B, vol. 16, pág. 5212, 1977.
22. Hamann, D. R.; Schlüter, M. e Chiang, C. Norm-conserving pseudopotentials. Physical Review Letter, vol. 43, pág. 1494, 1979.
23. Goedecker, S. e Maschke, K. Transferability of pseudopotentials. Physical Review A, vol. 45, pág. 88, 1992.
24. Laasonen, K. et. al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Physical Review B, vol. 47, pág. 142, 1993.
25. Vanderbilt, D. Optimally smooth norm-conserving pseudopotentials. Physical Review B, vol. 32, pág. 8412, 1985.
26. Katon, J. E. e Cohen, M. D. The Vibrational Spectra and Structure of Dimethyl carbonate and Its Conformational Behavior. Canadian Journal of Chemistry, vol. 53, pág. 1378, 1975.
27. Jones, G. I. L. e Owen, N. L. Molecular Structure and Conformation of Carboxylic Esters. Journal of Molecular Structure, vol. 18, pág. 1, 1973.
28. Collingwood, B.; Lee, H. e Wilmshurst, J. K. The structure and vibrational spectra of methyl chloroformate and dimethyl carbonate. Australian Journal of Chemistry, vol. 19, pág. 1637, 1966.
29. Borodin, O. e Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate Doped with LiPF6. Journal of Physical Chemistry B, vol. 113, pág. 1763, 2009.




