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Introduction   
Oscillators are important models in quantum systems 

because they are good approximation for different problems. 
The harmonic oscillator is the first approximation used for the 
vibrational spectroscopy models.1,2 In this model, Hooke’s 
law defines the potential energy operator:

where k is the force constant and depends on the nature of the 
bonded atoms and x is the vibration coordinate.

A more realistic model to describe molecular vibrations 
is given by the anharmonic oscillator. In this case, many 
different forms of analytical operators have been proposed. 
One of the most popular is the well-known Morse potential,1

where De is the molecular dissociation energy and β is a 
parameter associated with the curvature of V(x).

The potential operator can also be described from 
accurate quantum mechanical calculations. MRCI is among 
the quantum mechanical calculations able to describe the 
dissociation process as well as other spectroscopic constants 
in a very high level of accuracy. However, such methods are 
limited to be used in relatively small molecules. An interesting 
alternative to be applied in large system are the composite 

methods. Such alternative correspond to a combination of 
well-defined ab initio calculations to achieve an accurate 
total energy at a low computational cost when compared 
to high level calculations. These methods have been 
applied successfully in the calculation of thermochemical 
properties.3-5 However, potential energy curves provided 
by such accurate methods have not been used to estimate 
spectroscopic properties.

The objective of this work is to explore potential curves 
of some diatomic molecules from a composite method to 
estimate spectroscopic constants. The composite method 
to be explored will be the Gaussian 3 theory or simply 
G3.6 In order to obtain the spectroscopic constants a new 
variational numerical procedure will be presented to solve the 
Schrödinger equation.

Methods
The general G3 energy is defined as: 

E_G3=E[MP4/6-31G(d)]+ΔE(+)+ΔE(2df,p)+ 
ΔE(QCI)+ΔE(G3large)+ΔE(SO)+E(HLC)+E(ZPE)         (3)

Where the correction are: ΔE(+)  for diffuse functions; 
ΔE(2df,p) for polarization functions; ΔE(QCI) for electronic 
correlation effects beyond fourth order perturbation theory 
using the method of quadratic configuration interaction; 
ΔE(G3large) for larger basis set effects and for the non-
additivity caused by the assumption of basis set extensions 
for diffuse functions and higher polarization functions; spin–
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orbit correction, ΔE(SO), for atomic species only; E(HLC), 
higher level correction, added to take into account remaining 
deficiencies in the energy calculations and finally E(ZPE) 
the zero-point energy at 0 K and thermal effects. In the 
present work, E(ZPE) is not being included to describe the 
potential curves. All the calculations were performed by using 
Gaussian09 software7.

From the G3 potential curves the time independent 
Schrödinger equation was solved using a form of variational 
quantum Monte Carlo (VQMC) method. The one-dimension 
mean value energy of a system is described as:

where the right side of Eq.(4) contains the kinetic (T) and 
potential operators (V).

The kinetic energy operator is a second order derivative 
which can be described numerically by8

where i is the i-thm component of a discretized wavefunction 
vector, μ is the reduced mass of the system and h_i=x_(i+1)-
x_i. The potential energy operator will be described as set of 
discretized points obtained from the G3 calculation. After the 
application of the operators in an arbitrary and discretized 
wave function, Eq. (5) gives the energy of the system.

The systematic to get the result by VQMC is:9

i. Generates a random vector to be the initial wave 
function.

ii. Calculate the average energy using a discretized version 
of Eq.(4), Eq.(5) and the desired potential function.

iii. Select at random a single point of the vector and 
modify its value according to the equation:

ψ(x_i )=ψ(x_i )+(1-rand)δ                                 (6)

where rand is a random number generator with uniform 
distribution between zero and 1, and δ is a number which 
defines the range of change of the selected wave function.

iv. Recalculate the energy with the modified wave 
function using Eq. (4). If the new energy is lower than the 
first one, the modification is accepted. If it is not, the previous 

wave function is restored.
v. The procedure is repeated until determined number of 

steps and/or the convergence factor is reached.
After the optimization of the ground state wave function, 

the first excited states can be obtained using the same 
procedure but preserving the orthogonality of the system. 
In this work the Gram-Schmidt method was used.10 The 
procedure is repeated to provide as many excited states as 
necessary.

After 106 steps of VQMC, an extra optimization of the 
meshes was carried out using the modified Simplex algorithm 
of Nelder and Mead11.

Results and Discussion
The harmonic oscillator, which has the potential energy 

operator shown in Eq. (1), was used as an initial test case. 
The boundaries of the domains have been defined between ±5 
atomic units. The mass of the particle and the force constant 
have been set to 1 a.u. Table 1 shows ten states of the harmonic 
oscillators with 50, 125 and 200 points. 

State 50pts 125pts 200pts Exact
E0 0.4987     0.4998 0.4999 0.5
E1 1.4934     1.4990 1.4996 1.5
E2 2.4823     2.4974 2.4990 2.5
E3 3.4672     3.4949 3.4982 3.5
E4 4.4463     4.4920 4.4981 4.5
E5 5.4196     5.4876 5.4972 5.5
E6 6.3896     6.4851 6.4981 6.5
E7 7.3582     7.4833 7.5021 7.5
E8 8.3347     8.4987 8.5240 8.5
E9 9.3420     9.5225 9.6037 9.5

Table 1. The tenth firsts states for the harmonic oscillator. Energies are 
in atomic units.

As expected, increasing the number of the points yield 
more accurate energies which tends to the exact value. The 
accuracy is reduced for higher excited states. The more 
orthogonal functions are required from the calculations, 
the more pronounced is the error propagation. 

Figure 1 shows the first three harmonic wave 
functions.
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The method generates not only accurate energies, but 
also well behaved wave functions as shown in Fig.1.

From the present uncertainty for harmonic oscillator, 
a mesh of 200 points will be used for the calculations 
involving the Morse and the G3 potentials. The reduced 
mass, dissociation energy and curvature for Morse’s 
potential were taken from Herzberg,12 as well as the 
experimental energies. The same domain of the Morse’s 
potential has been used to calculate the energies from 
the G3 theory. All meshes were constructed firstly with 
few points which were increased by spline interpolation. 
Table 3 shows the vibrational energies for LiH, H2, HF, 
HCl, HBr, O2 and Cl2 by Morse’s potential, G3 energies 
and experimental results. All the data are in atomic units.

Table 2 shows that the error in energy increases with 
the increases of the state of energy. By comparison, the 
error of the zero-th state of the H2 molecule, in Morse’s 
potential, is 0.23%, while the fourth state is 3.0%. 
This enlargement of the error is explained by an error 
accumulation.

Some spectroscopic parameters were estimated by 
the equation:

Figure 1. The three firsts wavefunctions of the harmonic oscillator.

where ν ̃_e is the fundamental frequency and x ̃_e ν ̃_e is 
the anharmonic constant. Table 3 shows the values of ν 
̃_e and x ̃_e ν ̃_e from the calculations using the Morse 
and G3 potential, plus the experimental value.

State Morse G3 Exp.12

LiH

E0 0.00317 0.00298 0.00317
E1 0.00934 0.00880 0.00937
E2 0.01528 0.01443 0.01535
E3 0.02109 0.01985 0.02112
E4 0.02720 0.02506 0.02668

H2

E0 0.00986 0.00990 0.00989
E1 0.02871 0.02901 0.02884
E2 0.04642 0.04688 0.04668
E3 0.06297 0.06361 0.06341
E4 0.08145 0.07921 0.07904

HF

E0 0.00931 0.00936 0.00932
E1 0.03000 0.02744 0.02736
E2 0.04443 0.04468 0.04458
E3 0.06072 0.06111 0.06098
E4 0.07614 0.07672 0.07656

HCl

E0 0.00674 0.00672 0.00675
E1 0.01977 0.01972 0.01990
E2 0.03222 0.03218 0.03256
E3 0.04408 0.04409 0.04475
E4 0.05554 0.05530 0.07365

HBr

E0 0.00596 0.00599 0.00598
E1 0.01749 0.01762 0.01764
E2 0.02847 0.02880 0.02889
E3 0.03893 0.03953 0.03972
E4 0.04889 0.04978 0.05014

O2

E0 0.00357 0.00356 0.00359
E1 0.01057 0.01061 0.01067
E2 0.01738 0.01756 0.01765
E3 0.02402 0.02438 0.02453
E4 0.03046 0.03108 0.03129

Cl2

E0 0.00127 0.00122 0.00128
E1 0.00375 0.00363 0.00382
E2 0.00616 0.00600 0.00638
E3 0.00852 0.00834 0.00892
E4 0.01174 0.01063 0.01148

Table 2. The first five vibrational energies calculated from the Morse 
and G3 potentials and experimental results. The simulation were carried 
out with discretized wave functions containing 200 points. Energies are 
in atomic units.
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Table 3. Numerical and experimental values of vibrational parameters, 
in cm-1.

The calculated constants show that the errors do not 
follow a regular behavior. It implies that there are some 
situations that the Morse’s potential fits better than G3, 
but this is not a rule.

Conclusions    
The simulations performed in this work reveal that 

the present version of the variational principle associated 
with a Monte Carlo search is an accurate method to 
generate vibrational energies and well-behaved wave 
functions. The calculated spectroscopic parameters 
were usually considerably close to the experimental 
data with a small error. The approximate nature of both 
potentials tested may be pointed out as responsible for 
the deviations. Tests considering rigorous potential 
curves are under progress.
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