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Introduction
 This work aims to develop and implement an 

efficient theoretical and computational method for the 
non-relativistic quantum study of spatially confined two 
electrons atoms. Especially, in recent decades, studies 
on  simply and doubly excited states of helium atom 
have attracted considerable attention in atomic physics.1 
Additionally, advances in semiconductor technology 
have increasingly attracting the interest of physicists and 
chemists for investigating new quantum objects obtained 
by the confinement of electrons, atoms or molecules by 
potential models.2

Methods
Our methodology is based on the variational formalism 

and hyperspherical coordinates fixed in space,1 consisting 
of one hyperradius, ρ, and five hyperangles, Ω, being 
applied to study the helium atom whose Hamiltonian 
operator for the time-independent Schrödinger equation 
in this coordinate system is given by where μ depends on 

with the first term representing the Coulomb interaction 
and the second term representing a harmonic isotropic 
confinement:
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the masses, Λ is the hyperangular momentum operator 
containing all the angular variables3 and the confinement 
potential is given by the expression

Also we employed the finite element method for 
expansion of the wave function in terms of a finite set 
of local basis functions. In particular, we propose a 
modification in its p-version (p-FEM) assuming that 
the Hamiltonian is invariant under a reflection around a 
midpoint, then the parity is preserved.  In this case, we 
propose to use the p-FEM to build, in a simple way, basis 
functions adapted to the parity of the wave function. In 
Figure 1 we show, as an example, the eigenfunction of 
the seventh excited state of one-dimensional harmonic 
oscillator problem together with the basis functions 
utilized to expand an even function. Also we utilize the 
self-consistent finite element method4 to optimize the 
elements mesh, which, among other things, provide a 
reduction in the matricial dimensions of the problem.
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Figure 1. Eigenfunction of seventh excited state of the one-dimensional 
harmonic oscillator and their symmetry-adapted basis functions using 
the FEM.

Figure 2. Potential curves of the solution the hyperangular part of 
the problem of  harmonically confined helium atom. Dashed line 
corresponds to ω = 0 a.u. and solid line corresponds ω = 0.1 a.u..

Results and Discussion
Our emphasis is given to the calculation of the energy 

levels in atomic units. All calculations were made using 
a computational implementation in Fortran. Because 

of the symmetry of the Hamiltonian solutions of the 
hyperangular equation can be divided into even and odd. 
Therefore, we can apply the finite element method with 
basis functions appropriate to symmetry of the problem in 
which we had argued in the previous section. Examining 
the singlet states, S = 0, of helium atom with total angular 
momentum L = 0 it is possible to note that the conditions 
given by problem equations determine that only even 
solutions will exist.

The use of hyperspherical coordinates enables 
propose an adiabatic separation between the hyperradius 
and hyperangles in the same sense as the usual adiabatic 
model for a molecule. In Figure 2 are shown the potential 
curves for the first eigenvalues obtained from the solution 
of hyperangular part considering ω = 0, corresponding to 
free helium atom, and ω = 0.1 a.u., corresponding to the 
harmonic confinement. We note that the potential curve 
of Figure 2 for ω = 0 are compatible with the graphics 
in the literature.5 On the other hand, in the confinement 
situation, we note that as the hyperradius increases the 
angular eigenvalues tend to feel more the influence of 
the confinement potential increasing rapidly its value as 
compared to the free situation.

In the Table 1 we show some energy values of singlet 
states with L = 0 for two confinement intensities, ω. 
We note that even in a weak confinement the levels are 
already significantly different from the free helium atom 
presented in literature5. Although we have no numerical 
data for comparison we note that our results have values 

Artigo Geral 36

Revista Processos Químicos                                                 Edição Especial XVIII  SBQT Jul / Dez de 2015158



Table 1.  Energy levels of helium atom, with L = 0, confined by a 
harmonic isotropic potential obtained by p-FEM. 

Figure 3. Energy spectrum, E, depending on the intensity of the 
confinement, ω, for the helium atom confined by an isotropic harmonic 
potential.

consistent with those presented in Figure 6 of the Sako 
and Diercksen paper6.

Also in Figure 3, we show the energy spectrum, E, 
depending on the intensity of confinement, ω. In this 
figure it can clearly be observed split between the levels 
with L = 0 when ω increases in value which becomes 
more evident as the confinement is getting stronger. 
Indeed, for large values of ω, the influence of Coulomb 
repulsion on the correlation of electrons is smaller and 
its movements become mostly governed by the harmonic 
potential of confinement that affects the state with higher 
energies.

State Energy [a.u.]
ω = 0.1 ω = 0.5

1S -2.892146 -2.655916
2S -2.048908 -1.006816
3S -1.756004 0.115915

Conclusions
We conclude that the procedure focused on p-FEM 

was overall quite efficient. We believe that the realization 
of this work represents a starting point to achieving 
our primary goal in this research field: the building of 

computer codes based on new variational methods for 
solving the time-independent Schrödinger equation 
which are capable of performing extensive calculations 
of spatially confined atomic systems.  
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