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Introduction 
The cells perform several activities at every level 

through biochemical signaling. In general, every signal 
pathway is mediated by a receptor protein1,2. The 
specific function of this class of enzyme is controlled by 
their molecular geometric covalent modification. These 
geometric molecular modifications are associated with 
the process know how phosphorylation. In this process 
phosphate groups originated from an ATP molecule react 
with the tyrosine amino-acids of the receptor tyrosine 
kinases modifying the original structure of the enzyme. 
This process is correlated with the normal division of 
the cell as well the control of cell proliferation through 
apoptosis. Cancer is a disease where an uncontrolled 
division of cells are observed.  In this way, new cancer 
drugs are been developed from the knowledge of signal 
transduction3,4,5,6,7,8,9.  Focal adhesion kinase (FAK) 
is a non specific receptor tyrosine kinase, localized 
inside cytoplasm, that is implicated in regulation 
of a number of cell signaling pathways, including 
spreading, motility and apoptosis10,11,12,13,14,15,16. The 
increase of phosphorylation in this kind of enzyme has 
been correlated with the interaction of integrins with 
fibronectins, which are adhesive proteins that help the 
cells adhere with cellular matrix.

Over expression of FAK has been correlated with 
several kinds of tumors17,18,19,20,21. Experimentally, it has 
been showed that the uncontrolled division of cell is 
verified by a phosphorylation of aminoacid tyronsine 
397 in FAK22,23,24,25,26,27. The FAK phosphorylation 
is due of interaction between chemical signals and 
integrins with a non receptor tyrosine kinase. In the drug 

design context, molecular modeling has contributed 
to understand the interaction between FAK and 
pyrrolopirimidine inhibitors, helping in the discovery, 
development and optimization of new drugs28,29,30,31.

Dasatinib is a known drug used in different cancers 
treatments and it is correlated with FAK inhibition35. 
However the molecular interaction between FAK and 
the dasatinib is unknown. In this work it has been 
performed molecular docking between FAK and the 
drug dasatinib. In order to understand the chemical 
interaction between dasatinib and the  catalytic site 
of FAK, it was employed QM/MM calculation using 
PM6, HF, AM1, RMNDO approach for the higher layer 
and molecular mechanic for lower layer.  UFF force 
field was employed to describe low layer in QM/MM 
calculations. Molecular dynamics was performed to 
determine the behavior of  dasatinib inside the catalytic 
site. The amino acids of catalytic site were selected 
based in recent publications that show the interaction 
between FAK and the respective inhibitors. ONIOM 
approach based in RMNDO/UFF and HF/UFF are the 
more adequate quantum mechanic methods  to explain 
the interaction between FAK and dasatinib without 
internal error coordinate during the optmimization.  
The calculation results show that dasatinib interact via 
hydrogen bond with the aminoacid  ARG426 (Arginine 
426), that is the hydrogen bond found in others FAK 
inhibitors. 

Methods 
Based in recent studies30, it was performed 

molecular docking using AutoDockVina following 
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the next scripts. The docking was performed 
keeping the protein FAK frozen. For the ligand the 
dihedral angles were retained free.  It was used a 
grid with follow dimensions: x=-18, y=22 and z=16 
angstroms. Center grid was centered in catalytic 
site of protein FAK. The size box used on the grid 
had the follow orientation: x=-0.444, y=10.627 and 
z=6.613 angstrons. The time employed to proceed 
the exhaustiveness search of ligand conformations in 
catalytic site was 500 seconds.  In order to understand 
the interaction between the molecule dasatinib and 
FAK it was employed QM/MM calculations based in 
ONIOM approach present in Gaussian program. It was 
chosen the aminoacids CYS 502, LYS 454, MET 499, 
ARG 426, ALA 452, GLU 471, GLU 506, ARG 508, 
ARG 550, ASP 564 in order to compose the higher 
layer in according of current literature30. Quantum 
mechanics calculation based in PM6, B3LYP/6-31g, 
HF/6-31g, RMNDO were employed in higher layer 
that was optimized using the keyword quadmac, 
which does a quadratic step in the coordinates of 
all the atoms. 5000 SCF cycles were used in high 
layer optimization. UFF (Universal Force Field)  
was used in order to describe the Van-der Walls and 
electrostatic  potential for the atoms in lower layer, 
that was maintained frozen during the optimization.

A short molecular dynamics with the classic 
force field CHARM and the program Hyperchem 
was employed in order to verify the dihedral angles 
displacements not observed during the optimization. 
For this purpose was used force field CHARM with 
one nanoseconds of simulation, a temperature of 300K 
and a dielectric constant equal 80 to simulate implicit 
solvent.

Results and Discussion 
Equilibrium GEomEtry and 
molEcular intEractions

Only the quantum mechanics calculation based 
in HF and MNDO approximation provided complete 
optimization of the system FAK-Dasatinb.  The Table 
1 show the energy associated with the interaction 
between FAK and the drug Dasatinib.

The optimized QM/MM calculation, based in MNDO/
UFF and HF/UFF,  show that the drug Dasatinib interact 
with the aminoacid GLU471 via hydrogen bonding, as 
can be seen in the Figure 1. 

However when the molecular dynamics is performed, 
other hydrogen bonds into the catalytic site are found as 
shown in Figure 3.  In these selected groups is observed 
dihedral angle rotations in dasatinib molecule during 
molecular dynamics as observed in Figure 2. 

mEtHod intEraction 
EnEry in kcal

HF -108
MNDO -176

table 1. Interaction obtained using HF/UFF and MNDO/UFF 
calculation.

Figure 1.  Interaction between Dasatinib and the aminoacid GLU471.

Figure 2. Chemical groups that showed dihedral rotation during the 
molecular dynamics.
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The movement associated with the hydroxyl group 
allow the dasatinib perform hydrogen bond with the 
aminoacid ARG 426, as described in the Figure 3.

This hydrogen bond is observed in others FAK 
inibitors as noted in the literature30.

tHE problEm associatEd witH 
optimization

AM1, PM6 and B3LYP/3-21g  were not useful 
to performed a complete optimization. These 
approximations revealed several errors in internal 
coordinates.   In other hand HF/LANL2DZ and 
RMNDO performed a complete optimization of the 
complex FAK/dasatinib. In order to understand the 
optimization problem it was compared the molecular 
volume of  Dasatinib with different  FAK inhibitors 
The molecule dasatinib occupy  a large parcel 
of volume of the catalytic site. This fact may be 
corroborated when the volume of molecule dasatinib 
is compared with the volume of two know inhibitors. 
These results are showed below in the Table 2. 

Figure 3: Hydrogen bond associated with the rotation of dihedral angle 
of group hydroxyl in the molecule of dasatinib.

table 2. Molecular Volume occupied by different FAK inhibitos.

It is known that the semi-empirical method MNDO 
do not describe very well noncovalent interactions. 
The FAK/dasatnib bonding is essentially hydrogen 
bond and noncovalent interaction. In other hand the 
quantum-semi-empirical PM6 replace MNDO core-
core approximation by Voityuk diatomic expression 
resulting in a corresponding increased hydrogen bond 
interaction energy33. There is also a problem associated 
with the HF method. The HF theory cannot describe the 
hydrogen bonding in some molecules34. Although DFT 
does not predict true dispersion interactions in the weak  
interaction region of zero overlap, it can still be useful for 
predicting correlation energy and even dispersion-like 
interactions in the region of  overlap near the equilibrium 
geometry of even noncovalent complexes if one has an 
accurate enough functional34. Given these considerations 
we believe that during the energy optimization calculation 
via QM / MM , the inhibitor suffer deformation in their 
angles and dihedral , which cause errors in internal 
coordinates . These deformation are more pronounced for 
the functional B3LYP density and the quantum - semi-
empirical PM6 method, that are more accurately methods 
to describe the interactions associated with dasatinib/
FAK docking.  

Conclusions
Dasatinib establish hydrogen bonds with the 

aminoacid GLU471 in according with ONIOM 
optimization. In other hand, molecular dynamics 
reveals the possibility of the hydrogen bond  with the 
aminoacid ARG426. The problematic associated with 
the convergence errors in some methods of simulation 
such as AM1, PM6 and B3LYP, are associated with the 
size of molecular dasatinib into the catalytic site and the 
quality of methods used. Methods with high quality in 

inibidor Volume molecular
A3

Pirrolo -pirimidina 1510.93
ATP 1044.64

Dasatinibe 2303.61
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the description of interactions and bonds provide more 
angles displacements in dasatinib into the catalytic site.  
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