Qualidade de combustíveis e as novas políticas ambientais

  • Eduardo C. M. Faria
  • Aline M. Silva
  • Eduardo H. S. Cavalcanti
  • Kesio F. Ferreira
  • Hamilton B. Napolitano
Palavras-chave: políticas ambientais, biocombustíveis, aditivos

Resumo

Os combustíveis fósseis possuem origem não-renovável e são amplamente utilizados em todo o mundo, estando associados a uma grande parcela da emissão de gases poluentes na atmosfera terrestre. Existe uma demanda muito grande e crescente pela maior participação de fontes energéticas renováveis e menos poluentes na matriz energética mundial, sendo os biocombustíveis uma alternativa promissora e em crescente utilização no Brasil. A utilização de biocombustíveis em motores a combustão interna, apesar de favorecer a redução de poluentes, gera alguns problemas técnicos associados à sua menor estabilidade e suscetibilidade à degradação quando comparado a combustíveis fósseis. Como alternativa, aditivos podem ser aplicados de forma a garantir estabilidade e manutenção das propriedades físico-químicas dos biocombustíveis e suas misturas com combustíveis fósseis.

Referências

da Silva, V.; Silveira-Martins, E.; Otto, I. Mensuração Da Consciência Ambiental Dos Consumidores: Proposta e Validação de Escala. Rev. Adm. da Univ. Fed. St. Maria 2017, 10, 63–78.

de Oliveira, V.; Aguiar, E.; Melo, L.; Correia, S. Marketing e Consumo Verde: A Infl uência Do Greenwashing Na Confiança Verde Dos Consumidores. Rev. Gestão Soc. e Ambient. 2019, 13 (2), 93–110. https://doi.org/10.24857/rgsa.v13i2.2038.

Schiochet, R. A Evolução Do Conceito de Marketing “Verde.” Rev. Meio Ambient. e Sustentabilidade 2018, 15 (7), 21–35.

Baktash, L.; Talib, M. Green Marketing Strategies: Exploring Intrinsic and Extrinsic Factors towards Green Customers’ Loyalty. Environ. Manage. 2019, 20 (168), 127–134.

Ribeiro, C.; Schirmer, W. Panorama Dos Combustíveis e Biocombustíveis No Brasil e as Emissões Gasosas Decorrentes Do Uso Da Gasolina/ Etanol. Biofix Sci. J. 2017, 2 (2), 16–22. https://doi.org/http://dx.doi.org/10.5380/biofix.v2i2.53539.

Kato, G.; Rocha, M. Dilemas Institucionais Na Promoção Dos Biocombustíveis: O Caso Do Programa Nacional de Produção e Uso de Biodiesel No Brasil. Cad. do Desenvolv. 2011, 6 (8), 329–354.

de Araújo, A.; de Oliveira, E. Análise Do Consumo de Combustíveis Do Setor de Transporte Rodoviário No Brasil. Rev. Estud. Debate2020, 27 (3), 143–157. https://doi.org/http://dx.doi.org/10.22410/issn.1983-036X.v27i3a2020.2528.

Decreto n° 76.593 de 14 de Novembro de 1975 - Instituição do Proálcool https://www2.camara.leg.br/legin/fed/decret/1970-1979/decreto-76593-14-novembro-1975-425253-publicacaooriginal-1-pe.html.

Nitsch, M. O Programa de Biocombustíveis Proalcool No Contexto Da Estratégia Energética Brasileira. Rev. Econ. Política 1991, 11 (2), 123–138.

de Andrade, E.; de Carvalho, S.; de Souza, L. Programa Do Proálcool e o Etanol No Brasil. Engevista 2009, 11 (2), 127–136.

Rosillo-Calle, F.; Cortez, L. Towards Proalcool II - A Review of the Brazilian Bioethanol Programme. Biomass and Bioenergy 1998, 14 (2), 115–124. https://doi.org/https://doi.org/10.1016/S0961-9534(97)10020-4.

Gilio, L.; Castro, N. Avaliação de Aspectos Limitantes Ao Crescimento Do Etanol e o Setor Sucroenergético No Brasil. Rev. Eletrônica Energ. 2016, 6 (1), 58–74.

Brito, T.; Islam, T.; Stettler, M.; Mouette, D.; Meade, N.; dos Santos, E. Transitions between Technological Generations of Alternative Fuel Vehicles in Brazil. Energy Policy 2019, 134, 110915. https://doi.org/https://doi.org/10.1016/j.enpol.2019.110915.

Lei 11.097 de 13 de janeiro de 2005 - Lei do Biodiesel http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11097.htm#:~:text=Dispõe sobre a introdução do,2002%3B e dá outras providências.

Osaki, M.; Batalha, M. Produção de Biodiesel e Óleo Vegetal No Brasil: Realidade e Desafio. Organ. Rurais Agroindustriais 2011, 13 (2), 227–242.

Dantas, M.; Pinheiro, R. Marco Jurídico Do Biodiesel e o Modelo Regulatório Brasileiro. Direito E-nergia 2013, 8, 109–124.

Resolução CNPE n° 16 de 29/10/2018 - Novos aumentos de teor de biodiesel https://www.legisweb.com.br/legislacao/?id=369098.

Olabi, A.; Maizak, D.; Wilberforce, T. Review of the Regulation and Techniques to Eliminate Toxic Emissions from Diesel Engine Cars. Sci. Total Environ. 2020, 748, 141249. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141249.

Ramírez, R.; Gutiérrez, A.; Eras, J.; Valencia, K.; Hernández, B.; Forero, J. Evaluation of the Energy Recovery Potential of Thermoelectric Generators in Diesel Engines. J. Clean. Prod. 2019, 241, 118412.https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118412.

Lovarelli, D.; Bacenetti, J. Exhaust Gases Emissions from Agricultural Tractors: State of the Art and Future Perspectives for Machinery Operators. Biosyst. Eng. 2019, 186, 204–213. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2019.07.011.

Shrivastava, N.; Khan, Z. Application of Soft Computing in the Field of Internal Combustion Engines: A Review. Arch. Comput. Methods Eng. 2018, 25, 707–726. https://doi.org/https://doi.org/10.1007/s11831-017-9212-9.

Kharola, A.; Nikam, Y.; Patil, H. A Review of Literature to Aid in Management and Forecasting of Technology: A Case of Petrol Engines. PM World J. 2018, 7 (5), 1–9.

Javed, T.; Ahmed, A.; Raman, V.; Alquaity, A.; Johansson, B. Combustion-Based Transportation in a Carbon-Constrained Worl - A Review. Pollut. from Energy Sources 2018, 7–34.

Quazi, T.; Mhatre, C.; Khanolkar, S.; Patil, P.; Pawar, S. A Review on Internal Combustion Engines. Int. J. Res. Eng. Sci. Manag. 2018, 1 (10), 790–792.

Patel, M.; Pardhi, B.; Chopara, S.; Pal, M. Lightweight Composite Materials for Automotive - A Review. Int. Res. J. Eng. Technol. 2018, 5 (11), 41–47.

Udoye, N.; Inegbenebor, A.; Fayomi, O. The Study on Improvement of Aluminium Alloy for Engineering Application: A Review. Int. J. Mech. Eng. Technol. 2019, 10 (3), 380–385.

Ashok, B.; Ashok, S.; Kumar, C. Trends and Future Perspectives of Electronic Throttle Control System in a Spark Ignition Engine. Annu. Rev. Control 2017, 44, 97–115. https://doi.org/https://doi.org/10.1016/j.arcontrol.2017.05.002.

Sarkan, B.; Stopka, O.; Gnap, J.; Caban, J. Investigation of Exhaust Emissions of Vehicles with the Spark Ignition Engine within Emission Control. Procedia Eng. 2017, 187, 775–782. https://doi.org/10.1016/j.proeng.2017.04.437.

Leman, A.; Jajuli, A.; Feriyanto, D.; Rahman, F.; Zakaria, S. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review. MATEC Web Conf. 2017, 87, 02020. https://doi.org/https://doi.org/10.1051/matecconf/20178702020.

Venkateswarlu, K.; Kumar, R.; Krishna, R.; Sreenivasan, M. Modeling and Fabrication of Catalytic Converter for Emission Reduction. Mater. Today Proc. 2020, 33, 1093–1099. https://doi.org/https://doi.org/10.1016/j.matpr.2020.07.125.

Balaji, G.; Premnath, O.; Yuvaraj, R.; Kohli, A. Experimental Analysis of Exhaust Emissions Using Catalytic Converter.IOP Conf. Ser. Mater. Sci. Eng. 2018, 402, 012200. https://doi.org/10.1088/1757-899X/402/1/012200.

Resolução ANP N° 65/ 2011. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Rio de Janeiro 2011.

Resolução ANP N° 50/2013. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Rio de Janeiro 2013.

Ramos, L.; Kothe, V.; César-Oliveira, M.; Muniz-Wypych, A.; Nakagaki, S.; Hrieger, N.; Wypych, F.; Cordeiro, C. Biodiesel: Matérias-Primas, Tecnologias de Produção e Propriedades Combustíveis. Rev. Virtual Química 2017, 9 (1), 317–369. https://doi.org/10.21577/1984-6835.20170020.

Gebremariam, S.; Marchetti, J. Economics of Biodiesel Production: Review. Energy Convers. Manag. 2018, 168, 74–84. https://doi.org/https://doi.org/10.1016/j.enconman.2018.05.002.

Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M. Reactor Technologies for Biodiesel Production and Processing: A Review. Prog. Energy Combust. Sci. 2019, 74, 239–303. https://doi.org/https://doi.org/10.1016/j.pecs.2019.06.001.

Singh, D.; Sharma, D.; Soni, S.; Sharma, S.; Sharma, P.; Jhalani, A. A Review on Feedstocks, Production Processes, and Yield for Different Generations of Biodiesel. Fuel 2020, 262, 116553. https://doi.org/https://doi.org/10.1016/j.fuel.2019.116553.

Du, E.; Cai, L.; Huang, K.; Tang, H.; Xu, X.; Tao, R. Reducing Viscosity to Promote Biodiesel for Energy Security and Improve Combustion Efficiency. Fuel 2018, 211, 194–196. https://doi.org/https://doi.org/10.1016/j.fuel.2017.09.055.

Abed, K.; Gad, M.; Morsi, A.; Sayed, M.; Elyazeed, A. Effect of Biodiesel Fuels on Diesel Engine Emissions. Egypt. J. Pet. 2019, 28 (2), 183–188. https://doi.org/https://doi.org/10.1016/j.ejpe.2019.03.001.

Gad, M.; Araby, R.; Abed, K.; El-Ibiari, N.; Morsi, A.; El-Diwani, G. Performance and Emissions Characteristics of C.I. Engine Fueled with Palm Oil/Palm Oil Methyl Ester Blended with Diesel Fuel. Egypt. J. Pet. 2018, 27 (2), 215–219. https://doi.org/https://doi.org/10.1016/j.ejpe.2017.05.009.

Abed, K.; Morsi, A.; Sayed, M.; Shaib, A.; Gad, M. Effect of Waste Cooking-Oil Biodiesel on Performance and Exhaust Emissions of a Diesel Engine. Egypt. J. Pet. 2018, 27 (4), 985–989. https://doi.org/https://doi.org/10.1016/j.ejpe.2018.02.008.

Ndayishimiye, P.; Tazerout, M. Use of Palm Oil-Based Biofuel in the Internal Combustion Engines: Performance and Emissions Characteristics. Energy 2011, 36 (3), 1790–1796. https://doi.org/https://doi.org/10.1016/j.energy.2010.12.046.

Cavalcanti, E.; Zimmer, A.; Bento, F.; Ferrão, M. Chemical and Microbial Storage Stability Studies and Shelf Life Determinations ofN Commercial Brazilian Biodiesels Stored in Carbon Steel Containers in Subtropical Conditions. Fuel 2019, 236, 993–1007.

de Sousa, L.; Garcia, M.; Santos, E.; Silva, J.; de Castro, A.; de Moura, C.; de Moura, E. Study of the Kinetic and Thermodynamic Parameters of the Oxidative Degradation Process of Biodiesel by the Action of Antioxidants Using the Rancimat and PetroOXY Methods. Fuel 2019, 238, 198–207. https://doi.org/https://doi.org/10.1016/j.fuel.2018.10.082.

Leggieri, P.; Senra, M.; Soh, L. Cloud Point and Crystallization in Fatty Acid Ethyl Ester Biodiesel Mixtures with and without Additives. Fuel 2018, 222, 243–249. https://doi.org/https://doi.org/10.1016/j.fuel.2018.02.100.

Varatharajan, K.; Pushparani, D. Screening of Antioxidant Additives for Biodiesel Fuels. Renew. Sustain. Energy Rev. 2018, 82, 2017– 2028. https://doi.org/https://doi.org/10.1016/j.rser.2017.07.020.

Vu, N.; Hien, P.; Man, T.; Thu, V.; Tri, M.; Nam, N. A Study on Corrosion Inhibitor for Mild Steel in Ethanol Fuel Blend. Materials (Basel). 2018, 11 (59), 1–12. https://doi.org/https://doi.org/10.3390/ma11010059.

Astaghfari, G.; Soegijono, B. Influence of Heat Treatment on Structure and Corrosion Resistance of 8090 Aluminium Alloy for Ethanol Fuel Tank Application. IOP Conf. Ser. Mater. Sci. Eng. 2019, 694, 012032. https://doi.org/1088/1757-899X/694/1/012032.

Narisa, S.; Ariffin, S.; Khaidzir, H.; Hanizam, S. Review on the Compatibility of Non-Metal Materials in Automotive Components of Diesel Engine Vehicles with Blended Biodiesel Fuel. Adv. Sci. Lett. 2017, 23 (5), 4728–4732. https://doi.org/https://doi.org/10.1166/asl.2017.8869.

Annual World Fuel Ethanol Production (Mil. Gal.) https://ethanolrfa.org/statistics/annual-ethanol-production/ (accessed Jun 29, 2021).

Dados de produção e entrega de biodiesel no Brasil https://abiove.org.br/estatisticas/ (accessed Jun 29, 2021).

Resolução ANP N°1/ 2014. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Brasília 2014.

Resolução ANP N° 704/ 2017. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Brasília 2017.

Higgins, C.; Filip, S.; Afsar, A.; Hayes, W. Evaluation of Thermal and Oxidative Stability of Three Generations of Phenolic Based Novel Dendritic Fuel and Lubricant Additives. React. Funct. Polym. 2018, 142, 119–127. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2019.06.009.

França, F.; Freitas, L.; Ramos, A.; da Silva, G.; Brandão, S. Storage and Oxidation Stability of Commercial Biodiesel Using Moringa Oleifera Lam as an Antioxidant Additive. Fuel 2017, 203, 627–632. https://doi.org/https://doi.org/10.1016/j.fuel.2017.03.020.

Luz, G.; Sousa, B.; Guedes, A.; Barreto, C.; Brasil, L. Biocides Used as Additives to Biodiesels and Their Risks to the Environment and Public Health: A Review. Molecules 2018, 23 (10), 1–16. https://doi. org/https://doi.org/10.3390/molecules23102698.

Shabanov, A.; Galyshev, Y.; Zaitsev, A.; Sidorov, A. Analysis of the Effect of Detergent Additives on Fuel on the Performance of a Diesel Engine. IOP Conf. Ser. Mater. Sci. Eng. 2020, 791, 012073. https://doi.org/https://doi.org/10.1088/1757-899X/791/1/012073.

Narayan, S.; Moravec, D.; Hauser, B.; Dallas, A.; Dutcher, C. Removing Water from Diesel Fuel: Understanding the Impact of Droplet Size on Dynamic Interfacial Tension of Water-in-Fuel Emulsions. Energy Fuels 2018, 32 (7), 7326–7337. https://doi.org/https://doi.org/10.1021/acs.energyfuels.8b00502.

Lawan, I.; Zhou, W.; Idris, A.; Jiang, Y.; Zhang, M.; Wang, L.; Yuan, Z. Synthesis, Properties and Effects of a Multi-Functional Biodiesel Fuel Additive. Fuel Process. Technol. 2020, 198, 106228. https://doi.org/https://doi.org/10.1016/j.fuproc.2019.106228.

Hoekman, S.; Leland, A. Literature Review on the Effects of Organometallic Fuel Additives in Gasoline and Diesel Fuels. J. Fuels Lubr. 2018, 11 (1), 105–124. https://doi.org/www.jstor.org/stable/26554699.

Thangamani, S.; Sundaresan, S.; S., S.; Barawkar, V.; Jeyascelan, T. Impact of Biodiesel and Diesel Blends on the Fuel Filter: A Combined Experimental and Simulation Study. Energy 2021, 227, 120526. https://doi.org/https://doi.org/10.1016/j.energy.2021.120526.

Faria, E.; Duarte, V.; da Silva, A.; Fernandes, F.; de Paula, R.; Alonso, C.; Oliveira, G.; Naplitano, H. New Halogen Chalcone with Potential for Application in Biofuels. Energy Fuels 2020, 34, 5958–5968.

Kokonkov, A.; Lyah, D.; Ivanov, S.; Stroykov, G.; Ivanova, P. Xperimental Estimation of Specific Heat of Combustion of Agglomerated Peat Fuel. IOP Conf. Ser. Earth Environ. Sci. 2019, 378, 012046. https://doi.org/https://doi.org/10.1088/1755-1315/378/1/012046.

American Society for Testing and Materials. ASTM D4809 -18: Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method). 2018, p 10.

Dakhlaoui, I.; Karoui, K.; Jomni1, F. Thermal Stability, Low Gap Energy and High Temperature Order–Disorder Phase Transition in Hybrid Material: [N (CH3)4]2PdCl4. Appl. Organomet. Chem. 2020, 34 (4), 1–15. https://doi.org/https://doi.org/10.1002/aoc.5545.

Huang, Y.; Rong, C.; Zhang, R.; Liu, S. Evaluating Frontier Orbital Energy and HOMO/LUMO Gap with Descriptors from Density Functional Reactivity Theory. J. Mol. Model. 2017, 23 (3), 1–12. https://doi.org/https://doi.org/10.1007/s00894-016-3175-x.

Teunissen, J.; De Proft, F.; Vleeschouwer, F. Tuning the HOMO– LUMO Energy Gap of Small Diamondoids Using Inverse Molecular Design. J. Chem. Theory Comput. 2017, 13 (3), 1351–1365. https:// doi.org/https://doi.org/10.1021/acs.jctc.6b01074.

Suraj, C.; Krishnasamy, A.; Sundararajan, T. Investigations on Gradual and Accelerated Oxidative Stability of Karanja Biodiesel and Biodiesel–Diesel Blends. Energy Fuels 2019, 33 (9), 9196–9204. https://doi.org/https://doi.org/10.1021/acs.energyfuels.9b01678.

Sundus, F.; Fazal, M.; Masjuki, H. Tribology with Biodiesel: A Study on Enhancing Biodiesel Stability and Its Fuel Properties. Renew. Sustain. Energy Rev. 2017, 70, 399–412. https://doi.org/https://doi.org/10.1016/j.rser.2016.11.217.

Rial, R.; de Freitas, O.; dos Santos, G.; Nazário, C.; Viana, L. Evaluation of the Oxidative and Thermal Stability of Soybean Methyl Biodiesel with Additions of Dichloromethane Extract Ginger (Zingiber Officinale Roscoe). Renew. Energy 2019, 143, 295–300. https://doi.org/https://doi.org/10.1016/j.renene.2019.04.164.

BS EN 15751:2014: Automotive Fuels. Fatty Acid Methyl Ester (FAME) Fuel and Blends with Diesel Fuel. Determination of Oxidation Stability by Accelerated Oxidation Method. European Standards 2014, p 22.

Kankeu, E.; Marx, S.; Brink, A. Adaptation Behaviour of Bacterial Species and Impact on the Biodegradation of Biodiesel-Diesel. Brazilian J. Chem. Eng. 2017, 34 (2), 469–480. https://doi.org/https://doi.org/10.1590/0104-6632.20170342s20150491.

Zivkovic, S.; Veljkovic, M. Environmental Impacts the of Production and Use of Biodiesel. Environ. Sci. Pollut. Res. 2018, 25, 191–199. https://doi.org/doi:10.1007/s11356-017-0649-z.

Kazanceva, I.; Sendžikienė, E.; Sendžikaitė, I. Evaluation of Biodegradability and Stability of Biodiesel Fuel and Its Mixtures. Environ. Eng. Landsc. Manag. 2017, 24 (3), 101–107. https://doi.org/https://doi.org/10.6001/zemesukiomokslai.v24i3.3556.

Sangeeta, K.; Rashmi, S. Impact of Biodegradable Behaviour of Diesel Fuels with Biodiesel Blending: A Review. J. Biofuels 2020, 11 (1), 35–46. https://doi.org/https://www.indianjournals.com/ijor.aspx?

target=ijor:jbf&volume=11&issue=1&article=004.

Zhu, F.; Li, X.; Yang, S.; Chen, Y. Clinical Success of Drug Targets Prospectively Predicted by In Silico Study. Trends Pharmacol. Sci. 2018, 39 (3), 229–231. https://doi.org/https://doi.org/10.1016/j.tips.2017.12.002.

Das, T.; Mehta, C.; Nayak, U. Multiple Approaches for Achieving Drug Solubility: An in Silico Perspective. Drug Discov. Today 2020, 25 (7), 1206–1212. https://doi.org/https://doi.org/10.1016/j.drudis.2020.04.016.

Brás, N.; Neves, R.; Lopes, F.; Correia, M.; Palma, A.; Sousa, S.; Ramos, M. Combined in Silico and in Vitro Studies to Identify Novel Antidiabetic Flavonoids Targeting Glycogen Phosphorylase. Bioorg. Chem. 2021, 108, 104552. https://doi.org/https://doi.org/10.1016/j.bioorg.2020.104552.

Horel, A.; Schiewer, S. Microbial Degradation of Different Hydrocarbon Fuels with Mycoremediation of Volatiles. Microorganisms 2020, 8 (2), 163–178. https://doi.org/https://doi.org/10.3390/microorganisms8020163.

Schiewer, S.; Horel, A. Biodiesel Addition Influences Biodegradation Rates of Fresh and Artificially Weathered Diesel Fuel in Alaskan Sand. J. Cold Reg. Eng. 2017, 31 (4), 04017012 (1-14).

ABNT NBR 16038: 2012 - Combustíveis - Medição de Depósitos Em Válvulas de Admissão Em Motor Com Ignição Por Centelha. Associação Brasileira de Normas Técnicas - ABNT: Rio de Janeiro 2012, pp 1–68.

ABNT NBR 6601: 2021 Versão Corrigida - Veículos Rodoviários Automotores Leves - Determinação de Hidrocarbonetos, Monóxido de Carbono, Óxidos de Nitrogênio, Dióxido de Carbono e Material Particulado No Gás de Escapamento. Associação Brasileira de Normas Técnicas - ABNT: Rio de Janeiro 2021, pp 1–57.

Publicado
2021-10-28
Como Citar
C. M. Faria, E., Aline M. Silva, H. S. Cavalcanti, E., F. Ferreira, K., & B. Napolitano, H. (2021). Qualidade de combustíveis e as novas políticas ambientais. Revista Processos Químicos, 15(29). https://doi.org/10.19142/rpq.v15i29.625