Uma análise da refrigeração por absorção empregando uso de energia solar térmica e fluidos verdes como absorventes

  • Alex Vazzoler Senai Cetiqt
  • Maria C. C Aguiar
Palavras-chave: Refrigeração, Engenharia solar, Absorção

Resumo

A refrigeração solar por absorção é um campo de estudos de suma importância, em um contexto no qual ocorrem alterações climáticas alarmantes, devido ao seu potencial de redução de impactos ambientais em relação as fontes convencionais de energia. Um dos desafios de sua implementação é a substituição dos fluidos convencionais de refrigeração por fluidos mais ecológicos, como líquidos iônicos e nanofluidos. Vazamentos, além de consumo de eletricidade ou calor, geram impactos ao ambiente. Este artigo tem como objetivo explorar estas possibilidades discutindo as perspectivas atuais e futuras de fluidos não convencionais na refrigeração solar.

Referências

Referências

IEA. IEA, Global Improvements in Primary Energy Intensity, 2000-2018; 2018.

Arabkoohsar, A.; Sadi, M. Technical Comparison of Different Solar-Powered Absorption Chiller Designs for Co-Supply of Heat and Cold Networks. Energy Convers Manag 2020, 206, 112343. https://doi.org/10.1016/j.enconman.2019.112343.

Aliane, A.; Abboudi, S.; Seladji, C.; Guendouz, B. An Illustrated Review on Solar Absorption Cooling Experimental Studies. Renew. Sustain. Energy Rev. 2016, 65, 443–458. https://doi.org/10.1016/j.rser.2016.07.012.

Boretti, A.; Castelletto, S.; Al-Zubaidy, S. Concentrating Solar Power Tower Technology: Present Status and Outlook. In Nonlinear Engineering; 2018; pp 10–31. https://doi.org/10.1515/nleng-2017-0171.

Gantz, C. Refrigeration : A History - North Carolina: McFarland & Company.; 2015.

Wu, W.; Wang, B.; Shi, W.; Li, X. An Overview of Ammonia-Based Absorption Chillers and Heat Pumps. Renew. Sustain. Energy Rev. 2014, 31, 681–707. https://doi.org/10.1016/j.rser.2013.12.021.

Gopalakrishnan, A.; Donald, C.; Erickson, E. M. Characterization of Ammonia–Water Absorption Chiller and Application. Int. J. Air-Conditioning Refrig. 2018, 26 (4), 1850035. https://doi.org/10.1142/S2010132518500359.

Ibarra-Bahena, J.; Romero, R. J. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review. Energies 2014, 7, 751–766. https://doi.org/https://doi.org/10.3390/en7020751.

Stoecker, W. F.; Saiz Jabardo, J. M. Refrigeração Industrial, Terceira e.; Blucher, 2018.

Yokozeki, A. Theoretical Performances of Various Refrigerant-Absorbent Pairs in a Vapor-Absorption Refrigeration Cycle by the Use of Equations of State. Appl. Energy 2005, 80, 383–399. https://doi.org/10.1016/j.apenergy.2004.04.011.

Riffat, S.; Aydin, D.; Powell, R.; Yuan, Y. Overview of Working Fluids and Sustainable Heating, Cooling and Power Generation Technologies. nternational J. Low-Carbon Technol. 2017, 12 (4), 369–382. https://doi.org/10.1093/ijlct/ctx008.

Tien, C. Adsorption Calculations and Modelling; Butterworth-Heinemann, 1994.

Sumathy, K.; Yeung, K. H.; Yong, L. Technology Development in the Solar Adsorption Refrigeration Systems. Prog Energy Combust Sci 2003, 29 (4), 301–327. https://doi.org/10.1016/S0360-1285(03)00028-5.

Sun, J.; Fu, L.; Zhang, S. A Review of Working Fluids of Absorption Cycles. Renew. Sustain. Energy Rev. 2012, 16 (4), 1899–1906. https://doi.org/10.1016/j.rser.2012.01.011.

Anyanwu, E. E. Review of Solid Adsorption Solar Refrigeration II: An Overview of the Principles and Theory. Energy Convers. Manag. 2004, 45 (7–8), 1279–95. https://doi.org/10.1016/j.enconman.2003.08.003.

Herold K. E.; Radermacher, R.; Klein, S. A. Absorption Chillers and Heat Pumps, 2 ed.; CRC Press: Florida, 2016.

Li, M.; Xu, C.; Hassanien, R. H. E.; Xu, Y.; Zhuang, B. Experimental Investigation on the Performance of a Solar Powered Lithium Bromide–Water Absorption Cooling System. Int J Refrig 2016, 71, 46–59. https://doi.org/10.1016/j. ijrefrig.2016.07.023.

Mazloumi, M. Naghashzadegan, M. Javaherdeh, K. Simulation of Solar Lithium Bromide-Water Absorption Cooling System with Parabolic Trough Collector. Energy Convers. Manag. 2008, 49 (2820–32). https://doi.org/10.1016%2Fj.enconman.2008.03.014.

Fan, Y.; Luo, L.; Souyri, B. Review of Solar Sorption Refrigeration Technologies: Development and Applications. Renew. Sustain. Energy Rev. 2007, 11 (8), 1758–1775. https://doi.org/10.1016/j.rser.2006.01.007.

Ghaebi, H.; Shekari Namin, A.; Rostamzadeh, H. Performance Assessment and Optimization of a Novel Multi-Generation System from Thermodynamic and Thermoeconomic Viewpoints. Energy Convers. Manag. 2018, 165 (August 2017), 419–439. https://doi.org/10.1016/j.enconman.2018.03.055.

Khajepour, S.; Ameri, M. Techno-Economic Analysis of Using Three Fresnel Solar Fields Coupled to a Thermal Power Plant for Different Cost of Natural Gas. Renew. Energy 2020, 146, 2243–2254. https://doi.org/10.1016/j.renene.2019.08.075.

Wang, D. C.; Li, Y. H.; Li, D.; Xia, Y. Z.; Zhang, J. P. A Review on Adsorption Refrigeration Technology and Adsorption Deterioration in Physical Adsorption Systems. , 14(1), 344 353. Renew. Sustain. Energy Rev. 2010, 344–353. https://doi.org/10.1016/j.rser.2009.08.001.

El Fadar, A.; Mimet, A.; Pérez-García, M. Study of an Adsorption Refrigeration System Powered by Parabolic Trough Collector and Coupled with a Heat Pipe. Renew. Energy 2009, 34 (10), 2271–2279. https://doi.org/10.1016/j.renene.2009.03.009.

Hu, E. J. A Study of Thermal Decomposition of Methanol in Solar Powered Adsorption Refrigeration Machines. Sol. Energy 1998, 62 (5), 325–329. https://doi.org/10.1016/S0038-092X(98)00012-7.

Vasiliev, L. L.; Mishkinis, D. A.; Vasiliev Jr, L. L. Multi-Effect Complex Compound/Ammonia Sorption Machines. In International absorption Heat Pump Conference, Montreal, Canada; 1996; pp 3–8.

Guilleminot, J. J.; Poyelle, F.; Meunier, F. Experimental Results and Modeling Tests of an Adsorptive Air-Conditioning Unit. ASHRAE Trans. 1998, 104 (Pt 1B, SF-98-21-1), 1543–1551.

Chua, T.; Ng, K. C.; Chakraborty, A.; Oo, N. M.; Othman, M. A. Adsorption Characteristics of Silica Gel + Water Systems. J. Chem. Eng. Data 2002, 47, 1177–1181. https://doi.org/10.1021/je0255067.

Wang, K.; Wu, J. Y.; Xia, Z. Z.; Li, S. L.; Wang, R. Z. Design and Performance Prediction of a Novel Double Heat Pipes Type Adsorption Chiller for Fishing Boats. Renew. Energy 2008, 33, 780–790. https://doi.org/10.1016/j.renene.2007.04.023.

(

Yin, J.; Shi, L.; Zhu, M. S.; Han, L. Z. Performance Analysis of an Absorption Heat Transformer with Different Working Fluid Combinations. Appl. Energy 2000, 67, 281–292. https://doi.org/10.1016/S0306-2619(00)00024-6.

Sun, J.; Fu, L.; Zhang, S. G. A Review of Working Fluids of Absorption Cycles. Renew. Sustain. Energy Rev. 2012, 16 (4), 1899–1906. https://doi.org/10.1016/j.rser.2012.01.011.

Deng, S. M.; Ma, W. B. Experimental Studies on the Characteristics of an Absorber Using LiBr/H2O Solution as Working Fluid. Int. J. Refrig. 1999, 22 (4), 293–301. https://doi.org/10.1016/S0140-7007(98)00067-X.

Srikhirin, P.; Aphornratana, S.; Chungpaibulpatana, S. A Review of Absorption Refrigeration Technologies. Renew. Sustain. Energy Rev. 2001, 5 (4), 343–372. https://doi.org/10.1016/s1364-0321(01)00003-x.

Kurosawa, S.; Yoshikawa, M. The Highest Efficiency Gas Direct-Fired Absorption Water Heater-Chiller. ASHRAE Trans. 1982, 88 (Pt. 1), 401–415.

Grossman, G. Solar Powered Systems for Cooling, Dehumidification, and Air Conditioning. Sol. Energy 2002, 72, 53–62. https://doi.org/10.1016/S0038-092X(01)00090-1.

Kalogirou, S. A. Solar Thermal Collectors and Applications. Prog Energy Combust Sci 2004, 30 (2), 31–95. https://doi.org/10.1016/j.pecs.2004.02.001.

Bogart, M. Ammonia Absorption Refrigeration in Industrial Processes; 1981.

Dossat, R. J.; Horan, T. J. Principles of Refrigeration; Pearson, 2001.

Li, M.; Xu, C.; Hassanien, R. H. E.; Xu, Y.; Zhuang, B. Experimental Investigation on the Performance of a Solar Powered Lithium Bromide–Water Absorption Cooling System. Int. J. Refrig. 2016, 71, 46–59. https://doi.org/10.1016/j. ijrefrig.2016.07.023.

Tierney, M. J. Options for Solar-Assisted Refrigeration-Trough Collectors and Double Effect Chillers. Renew. Energy 2007, 32, 183–199. https://doi.org/10.1016/j. renene.2006.01.018.

Mazloumi, M. Naghashzadegan, M. Javaherdeh, K. Simulation of Solar Lithium Bromide-Water Absorption Cooling System with Parabolic Trough Collector. Energy Convers. Manag. 2008, 49, 2820–2832. https://doi.org/10.1016/j.enconman.2008.03.014.

Ibrahim, N. I.; Khan, M. M. A.; Mahbubul, I. M.; Saidur, R.; Al-Sulaiman, F. A. Experimental Testing of the Performance of a Solar Absorption Cooling System Assisted with Ice-Storage for an Office Space. Energy Convers. Manag. 2017, 148, 1399–1408. https://doi.org/10.1016/j.enconman.2017.07.001.

Buonomano, A.; Calise, F.; D’Accadia, M. D.; Ferruzzi, G.; Frascogna, S.; Palombo, A. Experimental Analysis and Dynamic Simulation of a Novel High-Temperature Solar Cooling System. Energy Convers. Manag. 2016, 109, 19–39. https://doi.org/10.1016/j.enconman.2015.11.047.

Hang, Y.; Qu, M.; Winston, R.; Jiang, L.; Widyolar, B.; Poiry, H. Experimental Based Energy Performance Analysis and Life Cycle Assessment for Solar Absorption Cooling System at University of Californian. Energy Build 2014, 82, 746–757. https://doi.org/10.1016/j.enbuild.2014.07.078.

Wasserscheid P, Welton T, E. Ionic Liquids in Synthesis. Weinheim, 2nd ed.; Wiley-VCH, 2007. https://doi.org/10.1002/9783527621194.ch1.

Lei, Z.; Chen, B.; Koo, Y. M.; MacFarlane, D. R. Introduction: Ionic Liquids. Chemical Reviews, 117(10),. Chem. Rev. 2017, 117 (10), 6633–35. https://doi.org/10.1021/acs.chemrev.7b00246.

Zhou, H.; Lv, P.; Qi, H.; Ma, J.; Wang, J. Removal of Residual Functionalized Ionic Liquids from Water by Ultrasound-Assisted Zero-Valent Iron/Activated Carbon. Environ. Technol. 2018, 2504–2512. https://doi.org/10.1080/09593330.2018.1444101.

Yokozeki, A.; Shiflett, M. . B. Water Solubility in Ionic Liquids and Application to Absorption Cycles. Ind. Eng. Chem. Res. 2010, 49 (19), 9496–9503. https://doi.org/10.1021/ie1011432.

Kim, Y. J.; Kim, S.; Joshi, Y. K.; Fedorovc, A. G.; Kohl, P. . A. Thermodynamic Analysis of an Absorption Refrigeration System with Ionic-Liquid/Refrigerant Mixture as a Working Fluid. Energy 2012, 44 (1), 1005–1016. https://doi.org/10.1016/j.energy.2012.04.048.

Wishart, J. F. Energy Applications of Ionic Liquids. R. Soc. Chem. - Energy emvironmental Sci. 2009, 2, 956–961. https://doi.org/10.1039/B906273D.

Kerlé, D.; Ludwig, R.; Geiger, A.; Paschek, D. Temperature Dependence of the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2009, 113 (38), 12727–35. https://doi.org/10.1021/jp9055285.

Kim, S.; Kim, Y. J.; Joshi, Y. K.; Fedorov, A. G.; Kohl, P. A. Absorption Heat Pump/Refrigeration System Utilizing Ionic Liquid and Hydrofluorocarbon Refrigerants. J. Electron. Packag. 2012, 134 (3), 031009. https://doi.org/10.1115/1.4007111.

Amde, M.; Liu, J. F.; Pang, L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–27. https://doi.org/10.1021/acs.est.5b03123.

Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H. Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids. J. Appl. Phys. 2013, 113, 011301. https://doi.org/10.1063/1.4754271.

Xuan, Y.; Li, Q. Heat Transfer Enhancement of Nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3.

Elsaid, K.; Olabi, A. G.; Wilberforce, T.; Abdelkareem, M. A.; Sayed, E. T. Environmental Impacts of Nanofluids: A Review. Sci. Total Environ. 2021, 763, 144202. https://doi.org/10.1016/j.scitotenv.2020.144202.

Wang, X. Q.; Mujumdar, A. S. Heat Transfer Characteristics of Nanofluids: A Review. Int. J. Therm. Sci. 2007, 46, 1–19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010.

Minea, A. A.; Murshed, S. M. S. A Review on Development of Ionic Liquid Based Nanofluids and Their Heat Transfer Behavior. Renew. Sustain. Energy Rev. 2018, 91, 584–599. https://doi.org/10.1016/j.rser.2018.04.021.

Buongiorno, J.; Hu, L. W.; Kim, S. J.; Hannink, R.; Truong, B. A. O.; Forrest, E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl. Technol. 2008, 162, 80–91. https://doi.org/10.13182/NT08-A3934.

Beck, M. P.; Yuan, Y.; Warrier, P.; Teja, A. S. The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids. J. Nanoparticle Res 2009, 11, 1129–1136. https://doi.org/10.1007/s11051-008-9500-2.

Khaleduzzamana, S. S.; Sohel, M. . R.; Saidura, R.; Mahbubula, I. M.; Shahrula, I. M.; Akash, B. A.; Selvara, J. Energy and Exergy Analysis of Alumina–Water Nanofluid for an Electronic Liquid Cooling System. Int. Commun. Heat Mass Transf. 2014, 57, 118–127. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.015.

Sundararaja, S.; Manivannanb, R. Comparative Energetic and Exergetic Analysis of Vapour Compression Refrigeration System with Au, HAuCl4 and CNT Nanoparticles. AIP Conf. Proc. 2020, 2270, 110038. https://doi.org/10.1063/5.0019669.

Aramesh, M.; Pourfayaz, F.; Haghir, M.; Kasaeian, A.; Ahmadi, M. H. Investigating the Effect of Using Nanofluids on the Performance of a Double-Effect Absorption Refrigeration Cycle Combined with a Solar Collector. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 234 (7), 1–13. https://doi.org/10.1177/0957650919889811.

Wu, X.; Hu, S.; Mo, S. Carbon Footprint Model for Evaluating the Global Warming Impact of Food Transport Refrigeration Systems. J. Clean. Prod. 2013, 54, 115–124. https://doi.org/10.1016/j.jclepro.2013.04.045.

Dinçer, I.; Kanoglu, M. Refrigeration Systems and Applications, 2nd ed.; Wiley, 2010.

Environmental Protection Agency (EPA). Greenhouse Gas Inventory Guidance: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases; 2014.

Lamnatou, C.; Chemisana, D. Concentrating Solar Systems: Life Cycle Assessment (LCA) and Environmental Issues. Renew. Sustain. Energy Rev. 2017, 78, 916–932. https://doi.org/10.1016/j.rser.2017.04.065.

Fischer, S. K. Total Equivalent Warming Impact: A Measure of the Global Warming Impact of CFC Alternatives in Refrigerating Equipment. Int. J. Refrig. 1993, 16 (6), 423–428. https://doi.org/10.1016/0140-7007(93)90059-H.

Sozen, A. Effect of Heat Exchangers on Performance of Absorption Refrigeration Systems. Energy Convers. Manag. 2001, 42 (14), 1699–1716. https://doi.org/10.1016/S0196-8904(00)00151-5.

Jain, V.; Sachdeva, G.; Kachhwaha, S. S. Thermodynamic Analysis of Ejector-Assisted Vapour Compression–Absorption Hybrid Refrigeration System. Int. J. Ambient Energy 2019, 1–10. https://doi.org/10.1080/01430750.2018.1562972.

Pandya, B.; Patel, J.; Mudgal, A. Thermodynamic Evaluation of Generator Temperature in LiBr-Water Absorption System for Optimal Performance. Energy Procedia 2017, 109, 270–278. https://doi.org/10.1016/j.egypro.2017.03.063.

Winnik, S. Corrosion Under Insulation (CUI) Guidelines; Woodhead Publishing, 2016.

Mehrabi, M.; Yuill, D. Fouling and Its Effects on Air-Cooled Condensers in Split System Air Conditioners (RP-1705). Sci. Technol. Built Environ. 2019, 25 (6), 1–12. https://doi.org/10.1080/23744731.2019.1605197.

Oh, J. S.; Binns, M.; Park, S.; Kim, J. K. Improving the Energy Efficiency of Industrial Refrigeration Systems. Energy 2016, 112, 826–835. https://doi.org/10.1016/j.energy.2016.06.119.

Publicado
2021-10-29
Como Citar
Vazzoler, A., & C. C Aguiar, M. (2021). Uma análise da refrigeração por absorção empregando uso de energia solar térmica e fluidos verdes como absorventes. Revista Processos Químicos, 15(29). https://doi.org/10.19142/rpq.v0i0.624