Estudo do Potencial de Adsorção de Metais Tóxicos pelo CaMoO

  • Sandra de C. Pereira Departamento de Química, Universidade Federal de Goiás, Regional Catalão
  • Jordana de A. N. de Oliveira Departamento de Química, Universidade Federal de Goiás, Regional Catalão
  • Alêssa G. Siqueira Departamento de Química, Universidade Federal de Goiás, Regional Catalão
  • Marina M. Ferreira Departamento de Química, Universidade Federal de Goiás, Regional Catalão
  • Vanessa N. Alves Departamento de Química, Universidade Federal de Goiás, Regional Catalão
Palavras-chave: metais tóxicos, nanoadsorventes, molibdato de cálcio

Resumo

O rápido desenvolvimento industrial e agrícola tem favorecido o aumento desenfreadono número de poluentes liberados no meio ambiente, principalmente, de metais tóxicosem água. Como consequência, faz-se necessário o desenvolvimento de novas tecnologiasde baixo custo, reprodutíveis e efiazes para a remoção desses contaminantes. Dentreessas tecnologias, a utilização de nanoadsorventes de óxidos metálicos vem recebendodestaque. Assim, o presente trabalho visa sintetizar o CaMoO4 utilizando radiação pormicro-ondas, caracterizar estruturalmente, morfologicamente e estudar o potencial deadsorção para íons Cd (II) e Mn (II). Observa-se que em pH 9, o material sintetizadoapresenta excelente potencial adsortivo para os íons cádmio (95%) e manganês (85%).

Referências

1. Pakulski, D.; W. Czepa; S. Witomska; A. Aliprandiet al. Graphene
oxide-branched polyethylenimine foams for effiient removal of
toxic cations from water. Journal of Materials Chemistry A, v. 6, n.
20, p. 9384-9390, 2018.
2. Khatoon, A..R.A.K. Rao. Effiient Cu (II) adsorption from
aqueous medium using organic-inorganic nanocomposite material.
Groundwater for Sustainable Development, v. 9, p. 100214, 2019.
3. Zhao, J.; Y. Niu; B. Ren; H. Chenet al. Synthesis of Schiff base
functionalized superparamagnetic Fe3O4 composites for effectiveremoval of Pb (II) and Cd (II) from aqueous solution. Chemical
Engineering Journal, v. 347, p. 574-584, 2018.
4. Nassar, N.N. Rapid removal and recovery of Pb (II) from wastewater
by magnetic nanoadsorbents. Journal of Hazardous Materials, v. 184,
n. 1-3, p. 538-546, 2010.
5. Tofihy, M.A..T. Mohammadi. Adsorption of divalent heavy metal
ions from water using carbon nanotube sheets. Journal of Hazardous
Materials, v. 185, n. 1, p. 140-147, 2011.
6. Li, B.; F. Su; H.-K. Luo; L. Lianget al. Hypercrosslinked
microporous polymer networks for effective removal of toxic metal
ions from water. Microporous and Mesoporous Materials, v. 138, n.
1-3, p. 207-214, 2011.
7. Niu, Y.; R. Qu; C. Sun; C. Wanget al. Adsorption of Pb (II)
from aqueous solution by silica-gel supported hyperbranched
polyamidoamine dendrimers. Journal of Hazardous Materials, v. 244,
p. 276-286, 2013.
8. Sharma, Y.C.; V. Srivastava; V. Singh; S. Kaulet al. Nanoadsorbents for the removal of metallic pollutants from water and
wastewater. Environmental Technology, v. 30, n. 6, p. 583-609, 2009.
9. Huang, M.; Y. Zhang; W. Xiang; T. Zhouet al. Effiient adsorption
of Mn (II) by layered double hydroxides intercalated with
diethylenetriaminepentaacetic acid and the mechanistic study.
Journal of Environmental Sciences, v. 85, p. 56-65, 2019.
10. Menezes-Filho, J.A.; M. Bouchard; P.d.N. Sarcinelli.J.C. Moreira.
Manganese exposure and the neuropsychological effect on children
and adolescents: a review. Revista panamericana de salud pública, v.
26, p. 541-548, 2009.
11. Deliyanni, E.A.; G.Z. Kyzas.K.A. Matis. Inorganic Nanoadsorbent:
Akaganéite in Wastewater Treatment. In: (Ed.). Composite
Nanoadsorbents: Elsevier, 2019. p.337-358.
12. Oladipo, A.A. Microwave-assisted synthesis of high-performance
polymer-based nanoadsorbents for pollution control. In: (Ed.). New
Polymer Nanocomposites for Environmental Remediation: Elsevier,
2018. p.337-359.
13. Tyagi, I.; V. Gupta; H. Sadegh; R.S. Ghoshekandiet al. Nanoparticles
as adsorbent; a positive approach for removal of noxious metal ions:
a review. Science Technology and Development, v. 34, n. 3, p. 195-
214, 2017.
14. Dhillon, A..D. Kumar. New Generation Nano-Based Adsorbents
for Water Purifiation. In: (Ed.). Nanoscale Materials in Water
Purifiation: Elsevier, 2019. p.783-798.
15. Hua, M.; S. Zhang; B. Pan; W. Zhanget al. Heavy metal removal
from water/wastewater by nanosized metal oxides: a review. Journal
of Hazardous Materials, v. 211, p. 317-331, 2012.
16. Skoog, D.; D. West; F. Holler.S. Crouch. Fundamentos de QuímicaAnalítica. 2006.
17. Faust, S..O. Aly. Chemistry of water treatment, chapter 4: removal of
organics by activated carbon. 1983.
18. Cao, C.-Y.; J. Qu; F. Wei; H. Liuet al. Superb adsorption capacity
and mechanism of flwerlike magnesium oxide nanostructures for
lead and cadmium ions. ACS applied Materials & interfaces, v. 4, n.
8, p. 4283-4287, 2012.
19. Sadegh, H.; G.A. Ali; V.K. Gupta; A.S.H. Makhloufet al. The role
of nanomaterials as effective adsorbents and their applications in
wastewater treatment. Journal of Nanostructure in Chemistry, v. 7, n.
1, p. 1-14, 2017.
20. Kunduru, K.R.; M. Nazarkovsky; S. Farah; R.P. Pawaret
al. Nanotechnology for water purifiation: applications of
nanotechnology methods in wastewater treatment. In: (Ed.). Water
Purifiation: Elsevier, 2017. p.33-74.
21. Luo, T.; J. Cui; S. Hu; Y. Huanget al. Arsenic removal and recovery
from copper smelting wastewater using TiO2. Environmental Science
& Technology, v. 44, n. 23, p. 9094-9098, 2010.
22. Islam, M.A.; D.W. Morton; B.B. Johnson; B. Mainaliet al.
Manganese oxides and their application to metal ion and contaminant
removal from wastewater. Journal of Water Process Engineering, v.
26, p. 264-280, 2018.
23. Sujan, A.; H. Yang; P. Dimick.B.J. Tatarchuk. A fier optics
system for monitoring utilization of ZnO adsorbent beds during
desulfurization for logistic fuel cell applications. Journal of Power
Sources, v. 315, p. 242-253, 2016.
24. Singh, S.; K. Barick.D. Bahadur. Fe 3 O 4 embedded ZnO
nanocomposites for the removal of toxic metal ions, organic dyes
and bacterial pathogens. Journal of Materials Chemistry A, v. 1, n.
10, p. 3325-3333, 2013.
25. Kim, J.; J.Y. Do; N.-K. Park; J.-P. Honget al. Adsorption/desorption
behavior of carbonyl sulfie gas on Scheelite type MWO 4
adsorbent. Separation and Purifiation Technology, v. 207, p. 58-67,
2018.
26. Silvaa, M.F.; E.A.G. Pinedab.R. Bergamascoa. Aplicação de óxidos
de ferro nanoestruturados como adsorventes e fotocatalisadores na
remoção de poluentes de águas residuais. Quim. Nova, v. 38, n. 3, p.
393-398, 2015.
27. Silva, C.A.S.; R.L. Silva; A.T. Figueiredo.A.V. N. Magnetic Solid
Phase Microextraction for Lead detection in aqueous samples using
magnetite nanoparticles. Journal of the Brazilian Chemical Society,
p. 1-7, 2019.
28. Sung Lim, C. Microwave-assisted synthesis and photoluminescence
of MMoO4 (M=Ca, Ba) particles via a metathetic reaction. Journal
of Luminescence, v. 132, n. 7, p. 1774-1780, 2012.29. Botelho, G.; I.C. Nogueira; E. Moraes.E. Longo. Study of structural
and optical properties of CaMoO4 nanoparticles synthesized by the
microwave-assisted solvothermal method. Materials Chemistry and
Physics, v. 183, p. 110-120, 2016/11/01/2016.
30. Tranquilin, R.L. Estudo das propriedades microestruturais e ópticas
do BaMoO4 processado em hidrotermal assistido por microondas.
Dissertação de mestrado. Araraquara, 2009.
31. Kusuma, M..G. Chandrappa. Effect of calcination temperature
on characteristic properties of CaMoO4 nanoparticles. Journal of
Science: Advanced Materials and Devices, v. 4, n. 1, p. 150-157,
2019.
32. Ponta, O.; R. Ciceo-Lucacel; A. Vulpoi; T. Raduet al. Synthesis and
characterisation of nanostructured silica-powellite-HAP composites.
Journal of Materials Science, v. 50, n. 2, p. 577-586, 2015.
33. Li, X.; G. Fan.Z. Huang. Synthesis and surface thermodynamic
functions of CaMoO4 nanocakes. Entropy, v. 17, n. 5, p. 2741-2748,
2015.
34. Bhanvase, B.; V. Kadam; T. Rode.P. Jadhao. Sonochemical process
for the preparation of novel calcium zinc molybdate nanoparticles.
International Journal of Nanoscience, v. 14, n. 04, p. 1550014, 2015.
35. Zalga, A.; Z. Moravec; J. Pinkas.A. Kareiva. On the sol–gel
preparation of different tungstates and molybdates. Journal of
Thermal Analysis and Calorimetry, v. 105, n. 1, p. 3-11, 2011.
36. LI, Z.; X. ZHAO; Y. JIANG.Y. ZHAO. Synthesis and Properties
of Spherical Calcium Molybdate Powderfor White Lightemitting
Diodes. Journal of The Chinese Ceramic Society, v. 42, n. 10, p.
1279-1286, 2014.
37. Ghaed-Amini, M.; M. Bazarganipour.M. Salavati-Niasari. Calcium
molybdate octahedral nanostructures, hierarchical self-assemblies
controllable synthesis by coprecipitation method: characterization
and optical properties. Journal of Industrial and Engineering
Chemistry, v. 21, p. 1089-1097, 2015.
38. Gao, D.; Y. Li; X. Lai; Y. Weiet al. Fabrication and luminescence
properties of Dy3+ doped CaMoO4 powders. Materials Chemistry
and Physics, v. 126, n. 1-2, p. 391-397, 2011.
39. Yin, Y.; Y. Gao; Y. Sun; B. Zhouet al. Synthesis and
photoluminescent properties of CaMoO4 nanostructures at room
temperature. Materials Letters, v. 64, n. 5, p. 602-604, 2010.
40. Xu, C.; D. Zou; H. Guo; F. Jieet al. Luminescence properties of
hierarchical CaMoO4 microspheres derived by ionic liquid-assisted
process. Journal of Luminescence, v. 129, n. 5, p. 474-477, 2009.
41. Phuruangrat, A.; T. Thongtem.S. Thongtem. Preparation,
characterization and photoluminescence of nanocrystalline calcium
molybdate. Journal of Alloys and Compounds, v. 481, n. 1-2, p.
568-572, 2009.
42. Sun, Y.; C. Li; Z. Zhang; X. Maet al. Persimmon-like CaMoO4
micro/nanomaterials: A rapid microwave-assisted fabrication,
characterization, and the growth mechanism. Solid State Sciences, v.
14, n. 2, p. 219-224, 2012.
43. Marques, V.; L. Cavalcante; J. Sczancoski; A. Alcântaraet al. Effect
of different solvent ratios (water/ethylene glycol) on the growth
process of CaMoO4 crystals and their optical properties. Crystal
Growth & Design, v. 10, n. 11, p. 4752-4768, 2010.
44. Karunakaran, C.; V. Rajeswari.P. Gomathisankar. Optical, electrical,
photocatalytic, and bactericidal properties of microwave synthesized
nanocrystalline Ag–ZnO and ZnO. Solid State Sciences, v. 13, n. 5,
p. 923-928, 2011.
45. Bi, J.; L. Wu; Z. Li; Z. Dinget al. A facile microwave solvothermal
process to synthesize ZnWO4 nanoparticles. Journal of Alloys and
Compounds, v. 480, n. 2, p. 684-688, 2009.
46. Ryu, J.H.; J.-W. Yoon; C.S. Lim; W.-C. Ohet al. Microwaveassisted synthesis of CaMoO4 nano-powders by a citrate complex
method and its photoluminescence property. Journal of Alloys and
Compounds, v. 390, n. 1-2, p. 245-249, 2005.
47. Hu, J.; G. Chen.I.M. Lo. Selective removal of heavy metals from
industrial wastewater using maghemite nanoparticle: performance
and mechanisms. Journal of Environmental Engineering, v. 132, n. 7,
p. 709-715, 2006.
48. Heidelmann, G.P.; T.M. Roldão; S.G. Egler; M. Nascimentoet al.
Uso de biomassa de microalga para biossorção de lantanídeos.
HOLOS, v. 6, p. 170-179, 2017.
49. Robles, J..J. Regalbuto. The Engineering of Pt/Carbon Catalyst
Preparation: For application on Proton Exchange Fuel Cell
Membrane (PEFCM). Progress Report REU, 2004.
50. de Freitas, F.B.A.; M.Y. de Freitas Câmara.M.D.F. Freire.
Determinação do PCZ de adsorventes naturais utilizados na
remoção de contaminantes em soluções aquosas. Blucher Chemistry
Proceedings, v. 3, n. 1, p. 610-618, 2015.
Publicado
2020-03-07
Como Citar
Pereira, S. de C., Oliveira, J. de A. N. de, Siqueira, A. G., Ferreira, M. M., & Alves, V. N. (2020). Estudo do Potencial de Adsorção de Metais Tóxicos pelo CaMoO. Revista Processos Químicos, 13(26), 19-28. https://doi.org/10.19142/rpq.v13i26.534