QM/MM (ONIOM) Calculation on FAK/Dasatinib Docking

  • Daniel A. B. de Oliveira Universidade Federal do Tocantins (UFT)
  • João B. L. Martins Universidade de Brasília (UNB)

Referências

1. S. W.Benson and O. Dobis, J. Phys. Chem. A,102 , 5175, (1998).

2. J. Liu, Z.Li, C.Sun, J. Phys. Chem. A, 105, 7707, (2001). 3Tsai, P.-Y.; Che, D.-C.

3. Nakamura,K. C. Lin, T. Kasai, Phys. Chem. Chem. Phys.,12, 2532,(2010).

4. Mukherjee, A.; Tang, M.; Pannu, H. S.; Chan-Hui, P.; Singh, S.; Mukherjeei, A.; Pidaparthi, S.; Shi, Y.; Dua, R. Profiling one or more components of a signaling pathway by determining the status of receptor tyrosine kinase (RTK) signal transduction pathway activation, useful for measuring ErbB receptors and receptor complexes in cancer disorders. WO2005037071-A2; US2005131006-A1; EP1681983-A2; US7402399-B2; US7402398-B2; US2009011440-A1; WO2005037071-A3; US2009155818-A1; US8247180-B2.

5. Albagli, O.; Laget, M. P.; Chanut, F., Photoreceptor differentiation in Drosophila: Transduction and interpretation of the RTK signaling pathway. M S-Medecine Sciences 1997, 13 (2), 184-191.

6. McCubrey, J. A.; Abrams, S. L.; Stadelman, K.; Chappell, W. H.; LaHair, M.; Ferland, R. A.; Steelman, L. S., Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. In Advances in Enzyme Regulation, Vol 50, Weber, G.; Weber, C. E. F.; Cocco, L., Eds. 2010; Vol. 50, pp 285-307.

7. Collins, I.; Workman, P., Design and development of signal transduction inhibitors for cancer treatment: Experience and challenges with kinase targets. Current Signal Transduction Therapy 2006, 1 (1), 13-23.

8. Fulda, S.; Debatin, K.-M., Signal transduction therapy targeting apoptosis pathways in cancers. Current Signal Transduction Therapy 2006, 1 (2), 179-190.

9. Klein, S.; Levitzki, A., Signal transduction therapy for cancer - Whither now? Current Signal Transduction Therapy 2006, 1 (1), 1-12.

10. Christoffersen, T.; Guren, T. K.; Spindler, K.-L. G.; Dahl, O.; Lonning, P. E.; Gjertsen, B. T., Cancer therapy targeted at cellular signal transduction mechanisms: Strategies, clinical results, and unresolved issues. European Journal of Pharmacology 2009, 625 (1-3), 6-22.

11. Bidwell, G. L., III; Raucher, D., Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades. Expert Opinion on Drug Delivery 2009, 6 (10), 1033-1047.

12. Levitzki, A.; Klein, S., Signal transduction therapy of cancer. Molecular Aspects of Medicine 2010, 31 (4), 287-329.

13. Huang, S.-M.; Hsu, P.-C.; Chen, M.-Y.; Li, W.-S.; More, S. V.; Lu, K.-T.; Wang, Y.-C., The novel indole compound SK228 induces apoptosis and FAK/Paxillin disruption in tumor cell lines and inhibits growth of tumor graft in the nude mouse. International Journal of Cancer 2012, 131 (3), 722-732.

14. Chang, S. K.; Hindes, A.; Cornelius, L. A.; Efimova, T., Prolinerich tyrosine kinase 2 (Pyk2), a focal adhesion kinase (FAK) homologue, induces apoptosis in human malignant metastatic melanoma. Journal of Investigative Dermatology 2012, 132, S130-S130.

15. Kwak, S. W.; Park, E. S.; Lee, C. S., Parthenolide induces apoptosis by activating the mitochondrial and death receptor pathways and inhibits FAK-mediated cell invasion. Molecular and Cellular Biochemistry 2014, 385 (1-2), 133-144.

16. Shieh, J.-M.; Wei, T.-T.; Tang, Y.-A.; Huang, S.-M.; Wen, W.-L.; Chen, M.-Y.; Cheng, H.-C.; Salunke, S. B.; Chen, C.-S.; Lin, P.; Chen, C.-T.; Wang, Y.-C., Mitochondrial Apoptosis and FAK Signaling Disruption by a Novel Histone Deacetylase Inhibitor, HTPB, in Antitumor and Antimetastatic Mouse Models. Plos One 2012, 7 (1).

17. Yoon, H.; Choi, Y.-L.; Song, J.-Y.; Do, I.; Kang, S. Y.; Ko, Y.-H.; Song, S.; Kim, B.-G., Targeted Inhibition of FAK, PYK2 and BCL-XL Synergistically Enhances Apoptosis in Ovarian Clear Cell Carcinoma Cell Lines. Plos One 2014, 9 (2).

18. Vanamala, J.; Radhakrishnan, S.; Reddivari, L.; Bhat, V. B.; Ptitsyn, A., Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach. Proteome Science 2011, 9.

19. Elmore, S., Apoptosis: A review of programmed cell death. Toxicologic Pathology 2007, 35 (4), 495-516.

20. Zhang, L.-L.; Liu, J.; Lei, S.; Zhang, J.; Zhou, W.; Yu, H.-G., PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cellular Signalling 2014, 26 (5), 1011-1020.

21. Chen, Q.; Xu, R.; Zeng, C.; Lu, Q.; Huang, D.; Shi, C.; Zhang, W.; Deng, L.; Yan, R.; Rao, H.; Gao, G.; Luo, S., DownRegulation of Gli Transcription Factor Leads to the Inhibition of Migration and Invasion of Ovarian Cancer Cells via Integrin beta 4-Mediated FAK Signaling. Plos One 2014, 9 (2).

22. Huang, G.; Ho, B.; Conroy, J.; Liu, S.; Qiang, H.; Golubovskaya, V., The Microarray Gene Profiling Analysis of Glioblastoma Cancer Cells Reveals Genes Affected by FAK Inhibitor Y15 and Combination of Y15 and Temozolomide. Anti-Cancer Agents in Medicinal Chemistry 2014, 14 (1), 9-17.

23. Lane, D.; Matte, I.; Laplante, C.; Garde-Granger, P.; Rancourt, C.; Piche, A., Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. Journal of Ovarian Research 2013, 6.

24. Kong, X.; Li, G.; Yuan, Y.; He, Y.; Wu, X.; Zhang, W.; Wu, Z.; Chen, T.; Wu, W.; Lobie, P. E.; Zhu, T., MicroRNA-7 Inhibits Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer Cells via Targeting FAK Expression. Plos One 2012, 7 (8).

25. Wan, H.-T.; Mruk, D. D.; Li, S. Y. T.; Mok, K.-W.; Lee, W. M.; Wong, C. K. C.; Cheng, C. Y., p-FAK-Tyr(397) regulates spermatid adhesion in the rat testis via its effects on F-actin organization at the ectoplasmic specialization. American Journal of Physiology-Endocrinology and Metabolism 2013, 305 (6), E687-E699.

26. Jiang, X.; Sinnett-Smith, J.; Rozengurt, E., Differential FAK phosphorylation at Ser-910, Ser-843 and Tyr-397 induced by angiotensin II, LPA and EGF in intestinal epithelial cells. Cellular Signalling 2007, 19 (5), 1000-1010.

27. Mukai, M.; Iwasaki, T.; Tatsuta, M.; Togawa, A.; Nakamura, H.; Murakami-Murofushi, K.; Kobayashi, S.; Imamura, F.; Inoue, M., Cyclic phosphatidic acid inhibits RhoA-mediated autophosphorylation of FAK at Tyr-397 and subsequent tumorcell invasion. International Journal of Oncology 2003, 22 (6), 1247-1256.

28. Hunger-Glaser, I.; Fan, R. S.; Perez-Salazar, E.; Rozengurt, E., PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: Dissociation from Tyr-397 phosphorylation and requirement for ERK activation. Journal of Cellular Physiology 2004, 200 (2), 213-222.

29. Jacamo, R.; Jiang, X.; Lunn, J. A.; Rozengurt, E., FAK phosphorylation at Ser-843 inhibits Tyr-397 phosphorylation, cell spreading and migration. Journal of Cellular Physiology 2007, 210 (2), 436-444.

30. Eide, B. L.; Turck, C. W.; Escobedo, J. A., IDENTIFICATION OF TYR-397 AS THE PRIMARY SITE OF TYROSINE PHOSPHORYLATION AND PP60(SRC) ASSOCIATION IN
THE FOCAL ADHESION KINASE, PP125(FAK). Molecular and Cellular Biology 1995, 15 (5), 2819-2827.

31. Choi, H. S.; Wang, Z. C.; Richmond, W.; He, X. H.; Yang, K. Y.; Jiang, T.; Sim, T. B.; Karanewsky, D.; Gu, X. J.; Zhou, V.; Liu, Y.; Ohmori, O.; Caldwell, J.; Gray, N.; He, Y., Design and synthesis of 7H-pyrrolo 2,3-d pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorganic & Medicinal Chemistry Letters 2006, 16 (8), 2173-2176.

32. Choi, H. S.; Wang, Z. C.; Richmond, W.; He, X. H.; Yanga, K. Y.; Jiang, T.; Karanewsky, D.; Gu, X. J.; Zhou, V.; Liu, Y.; Che, J. W.; Lee, C. C.; Caldwell, J.; Kanazawa, T.; Umemura, I.; Matsuura, N.; Ohmori, O.; Honda, T.; Gray, N.; He, Y., Design and synthesis of 7H-pyrrolo 2,3-d pyrimidines as focal adhesion kinase inhibitors. Part 2. Bioorganic & Medicinal Chemistry Letters 2006, 16 (10), 2689-2692.

33. Barra de Oliveira, D. A.; de Oliveira Neto, M.; Martins, J. B. L., Theoretical study of disubstituted pyrrolopyrimidines as focal adhesion kinase inhibitors. International Journal of Quantum Chemistry 112 (10), 2324-2329.

34. de Courcy, B.; Piquemal, J.-P.; Garbay, C.; Gresh, N., Polarizable Water Molecules in Ligand-Macromolecule Recognition. Impact on the Relative Affinities of Competing Pyrrolopyrimidine Inhibitors for FAK Kinase. Journal of the American Chemical Society 132 (10), 3312-3320.

35. Moreno Nascimento, E. C.; Martins, J. B. L., Electronic structure and PCA analysis of covalent and non-covalent acetylcholinesterase inhibitors. Journal of Molecular Modeling 2011, 17 (6), 1371-1379.

36. James J. P. Stewart, Journal of Molecular Modeling, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements December 2007, Volume 13, Issue 12, pp 1173-1213.

37. Yan Zhao, Oksana Tishchenko, and Donald G. Truhlar. How Well Can Density Functional Methods Describe Hydrogen Bonds to π Acceptors. The Journal of Physical Chemistry. 2005, 109 (41), pp 19046–1905 35Dario Caccia1, Francesca Miccichè1, Giuliana Cassinelli2, Piera Mondellini1, Patrizia Casalini3 and Italia Bongarzone. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Molecular Cancer 2010, 9:278.
Publicado
2015-07-01
Como Citar
Oliveira, D. A. B. de, & Martins, J. B. L. (2015). QM/MM (ONIOM) Calculation on FAK/Dasatinib Docking. Revista Processos Químicos, 9(18), 68-72. https://doi.org/10.19142/rpq.v9i18.259