
Applications of  
Kramers Escape  
Rate Theory With  

Power-Law Distributions

Yanjun Zhou 

Kramers escape rate theory is the most important one of modern reaction rate 
theories. However, one key assumption of the theory that thermodynamic equilibrium 
must prevail throughout the entire system studied is farfetched for open complex 
systems. Thereby, Kramers escape rates are generalized to describe rates of reactions 
in nonequilibrium systems with power-law distributions. Kramers escape rates in the 
very low damping systems, in overdamped systems and in the low-to-intermediate 
damping (LID) systems are investigated and the corresponding escape rates are obtained 
respectively on the basis of nonextensive statistics. When apply to biological, physical 
and chemical systems in each damping systems, these generalized escape rates with 
power-law distribution show a better agreement with experimental rates as compared 
with the traditional Kramers escape rates. It is expected that the generalized result can 
lead to an insight into the research on reaction rate theory for nonequilibrium complex 
systems with power-law distributions.
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Introdução
Kramers escape rate theory, a theoretical reaction 

model, which describes the thermal escape of a Brownian 
particle out of a metastable well, has been got high 
interests in biology, physics and chemistry [1,2] etc. In 
1940, Kramers realized a very unsatisfactory feature of 
the transition state theory (TST), whose escape rate is in 
contradiction to the fluctuation-dissipation theorem. So 
he defined a prefactor μ to remedy this defect [3]. He 
yielded three explicit formulas of μ for the escape rate in 
a very low damping, intermediate and overdamped cases 
respectively according to different dissipative coupling 
to the bath. His outstanding results point new ways to 
understand the dynamic features of systems.

When Brownian particles move in different damping 
media, Kramers postulated that the systems can be 
thermal equilibrium both in the reaction state and product 
state, a Maxwell-Boltzmann (MB) distribution always 
holds in the whole time, and any disturbance to the MB 
distribution can almost be negligible [3]. Under this 
key assumption, the escape rates in different damping 
systems are obtained. However, the assumption is 
unsatisfying in open complex systems. Nonequilibrium 
is the main feature for open complex systems. As a 
matter of fact, lots of experimental observations on 
complex systems have shown non-MB distributions 
or power-law distributions, such as folding of proteins 
[4], trapped ion reactions [5], chemical kinetics, and 
biological and ecological population dynamics [6, 7], 
reaction–diffusion processes [8], chemical reactions [9], 
astrophysical and space plasmas [10], etc. The forms of 
such power-law distributions in various systems include 
the generalized Lorentzian distributions in the solar 
wind and space plasmas [11, 12], the q-distributions 
in complex systems within nonextensive statistical 
mechanics [13], and α-distributions appeared in physics, 
chemistry and elsewhere like P(E) ~ E-α with an index 
α>0 [5, 8, 9]. These power-law distributions may lead 
to anomalous processes different from those in the 
realm governed by Boltzmann–Gibbs statistics with 
MB distribution. At the same time, a class of statistical 
mechanical theories studying the power-law distributions 
in complex systems has been constructed, for instance, 
by generalizing Boltzmann entropy to Tsallis entropy 

[13], by generalizing Gibbsian theory [14] to a system 
away from thermal equilibrium, and so forth. Therefore, 
Kramers escape rate can be reconsidered under the 
condition of power-law distributions in complex systems.

Fundamentals
There are two main theories to calculate the escape 

rate constants k, one is the first passage time theory [15, 
16] and the other is flux over population theory [3, 16]. 
The first passage time is the first time that the particles 
leave the boundary of V. Because of the noise, even the 
same initial positions will lead to different first passage 
times, hence the mean first passage time (MFPT) is 
introduced. If initial positions of the particles are 
located in the reactant domain, and the finite space V 
is the domain for the reaction, then the transition from 
the reactant to the boundary may be characterized by a 
rate which is simply determined by the inverse MFPT, 
i.e. k=1/τ in very low damping and k=1/2τ in high 
damping. Suppose the particle has the initial position 
x0 or position x0 and momentum p0, and locates in the 
finite space V with absorbing boundary. If P(x,t) or 
P(x,p,t) is the probability distribution that has not left 
by time t, then it satisfies the Smoluchowski equation 
in overdamped system and Klein-Kramers equation 
in a very low and intermediate damping systems. 
The corresponding initial conditions and absorbing 
boundary conditions are P(x,0)=δ(x-x0), P(x,t)=0 on 

V and P(x,p,0)=δ(x-x0) δ(p-p0), P(x,p,t)=0 on V. 
Introducing the Fokker-Planck operator and adjoint 
operator, operating on the MFPT with it and doing 
the time integral, the MFPT is then determined by 
correspondingly solving the inhomogeneous adjoint 
equation [3, 16],
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where m is the mass of the particle, U is a potential field, 
γ is the friction coefficient, D is the diffusion coefficient. 
Eqs. (1a)-(2b) are the starting point of the calculations of 
escape rate constants. For the flux over population theory, 
if the steady-state current J and the (nonequilibrium) 
population inside the initial domain n are got, the rate of 
escape k is then given by the ratio k = J/n. 

In very low damping systems, Brownian force causes 
only a tiny perturbation in the undamped energy during 
one oscillation in the well, therefore the energy is a slowly 
varying quantity and the phase a fast-varying quantity. 
So the original Klein-Kramers equation in the canonical 
variables (x, p) can be written as a diffusion equation in 
the energy (E) and phase (w). Average the density over the 
fast phase variable, and an energy diffusion equation in 
the slow (almost conserved) energy variable is obtained 
[3]. The chain rule is used to transform Eq. (1a) into the 
functions of the energy E and the phase w, average the 
Eq. (1a) over the phase w and utilize the definition of the 
time average and action I, i.e. , then Eq. (1a) becomes,

and this generalized result can well apply to the 
Josephson junction. The Josephson junction consists of 
two superconductors coupled by a weak link and it has 
received much attention in both theory and experiment 
[3, 18-20]. At temperatures sufficiently close to the 
transition temperature, thermal fluctuations can disrupt 
the coupling of the phases of the order parameters of 
two superconductors separated by a thin insulating 
barrier. The Josephson current thereby acquires a 
noise voltage with a nonzero average value [20]. 
Generation of a noise voltage with a nonzero average 
value can be considered that a Brownian particle 
performing its motion in a potential energy with the 
damping coefficient and the random force escapes 
from a metastable state, so it can be directly treated 
by Kramers escape theory. Since the escape process is 
stochastic and the bias current of each escape is also 
stochastic, which result in the distribution function 
f (I) measured in the experiments. According to the 
relationship between the distribution function and 
MFPT [19], the MFPT can be indirectly obtained 
and testified [21]. Since κ≠0 reflects influence of the 
environment on the system, κ<0 and κ>0 stand for 
stronger and weaker influence from the environment, 
which are analogous to superdiffusive effect and 
subdiffusive effect in nonlinear diffusive media, so κ 
may be considered as an anomalous escape factor.

In the low to intermediate damping (LID) system, the 
escape rate is obtained based on the flux over population 
theory [22],

where . Eq. (3) is the general energy-diffusion equation 
of the MFPT or escape rate constant in very low damping 
system which can both describe the thermal equilibrium 
and nonequilibrium systems. For intermediate and high 
damping systems, the rate constants can be got directly 
by solving Eq. (1) and (2) with absorbing boundary 
conditions.

Applications
In the very low damping system, generalized 

fluctuation-dissipation relation [17] is D=mγβ-1(1-
κγβ-E), where β=1/kBT, kB is the Boltzmann constant, T 
is the temperature, κ is a parameter and κ ≠0 measures a 
distance away from thermal equilibrium. The solution to 
Eq. (3) is
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where γc and Ic are the friction coefficient and action in 
the saddle point, factor α is a constant of order unit and 
kκ-TST is the TST rate with power-law distribution [23]. 
Then we apply our result to the experiment. K.Hara et 
al. [24] studied the Kramers turnover behavior for the 
excited-state isomerization of 2-alkenylanthracene in 
alkane at the high pressure. The experimental material 
was 2-(2-propenyl) anthracene (22PA), synthesized using 
the method of Stolka et al. [25] and purified by TLC. 
Steady-state and time-resolved fluorescence spectra 
in supercritical (SC) ethane (99.95%) and SC CO2 
(99.999%) were measured at 323 K and at pressures up to 
15.1 and 17.4 MPa respectively [24]. The interaction (i.e. 
dynamic solvent effect) between the solute and solvent 
is studied and the consequence can be well explained 
by our LID result. Parameters we adopt in the Eq. (5) 
keep the same with the experimental data [24]. At the 
turning point, our result k/kTST=0.64 with the power-law 
parameter κ=-0.28 agrees with the experimental turning 
point value κmax=0.64. So, it is concluded that our theory 
represents excellently the experimental result compared 
to the traditional theory.

In the overdamped system, the escape rate k is [26],

unfolding of titin, the material is a recombinant construct 
of 8 tethered I27 titin molecules, and the unfolding of 
multiple covalently linked proteins can be treated as the 
unfolding of a single protein with an average effective 
pulling spring constant. The apparent rate is roughly 
between one and eight times than the intrinsic rate k0 
of a single titin, and the specific value of k0 is confirmed 
according to the rupture event of molecules in the 
experiment [29]. We take experimental parameters into 
Eq. (6) and get that the theoretical result of k0 has a good 
agreement with the experimental one when power-law 
parameter κ adopts a specific value. Thereby, we show an 
expected result obtained by our generalized expression 
of the escape rate.

Conclusion
It should be noticed that nonextensive statistics is the 

first, but probably not the only, new possible classical 
statistics for nonextensive systems. Nonextensive 
systems may obey another statistics other than that of BG 
or Tsallis, depending on the nature of their underlying 
dynamics. According to the present studies, nonextensive 
statistics has been proved to be very useful for the 
variety nonequilibrium and nonextensive systems and 
can represent different complex phenomena. Further 
developments and applications of nonextensive statistics 
have been continuing.

Based on the nonextensive statistics, we have derived 
the generalized expressions of the escape rate constants 
in three different damping systems with power-law 
distributions according to the MFPT theory and flux 
over population theory and apply them into different 
domains. The new results have been proved that our 
theoretical rates with power-law distribution show good 
conformity with experimental ones. The advantage of our 
result with power-law distributions lies in its theoretical 
foundations and physical meanings, so it is expected 
that the generalized results can lead to an insight into 
the research on reaction rate theory for nonequilibrium 
complex systems with power-law distributions and have 
wide applications in the further.
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